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STRUCTURE OF THE FUNDAMENTAL SOLUTION OF CAUCHY
PROBLEM FOR KOLMOGOROV SYSTEMS OF SECOND-ORDER

l.LV. Bu rtnyak, H.P. Malytska

Abstract. We study a structure of the fundamental solution of the Cauchy problem
for a class of ultra parabolic equations with a finite number of groups of variables with
degenerated parabolicity.

Keywords: Kolmogorov systems, fundamental solutions, degenerate parabolic equations.

1 Introduction

In this paper we investigate the fundamental solution to the Cauchy problem (FSCP) for a
class of systems of Kolmogorov equations [1, 2] which are a natural generalization of diffusion
equation with inertia.

The equations that generalize Kolmogorov equations have been studied in many papers,
especially a detailed description of the theories of the diffusion equations with inertia is pre-
sented in [3-5]. The great interest to study the behavior of solutions of Cauchy problem and
boundary problems for Kolmogorov equations caused their wide application in Financial
Mathematics for calculating the price of Asian options and volatility characteristics [6, 7].

We consider the system of equations with arbitrary number of groups of variables for which
the parabolicity is degenerated and research the structure of FSCP. | particular we obtained
exact dependence and types of shifts on lines of levels for FSCP of systems and model
equations.
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2. NOTATIONS AND FORMULATION OF THE PROBLEM

Let 1, ngy be fixed natural numbers and nyp > 1,x € R™,(x,s) = ¥ xjsj, x* = (X2, ees Xy )-

j=1
Consider the following system of equations of the form
np—1 2 n
Oty (t, x) Z xj 0 u(t,x) =Y Y a%’(t,x)aik u(t,x), v="_mn xellyq, (2.1)
k=0 r=1 !
where o) = {(t,x), t€(0,T], T>0, x € R™}.

Assume that the coeff1c1ents a " (t, x) of the system are complex-valued functions such that

2 n
k _
o wy(t, x) ; Z% a%’(t,x)ax,lc wy(t,x), v=1,n (2.2)

system (2.2) is uniformly parabolic in Petrovsky means in Iy 7 and (x2, ..., Xz,) are considered
as parameters. For convenience, we write the system (2.1) in matrix form:

np— -1 2
A (t, x) — Z Xjox,, u(t,x) =Y a(t x) 8’;,{ u(t, x).
j=1 k=0

Find the solution of system (2.1) which satisfies the initial condition
u(t, x)|t=r = up(x), xe R, 0<t<t<T, (2.3)

where T is a given number and 1y = col (11, (X), ..., Ugy, (X)) is a given matrix column.

3. THE SOLUTION OF CAUCHY PROBLEM FOR SYSTEMS WITH CONSTANT COEFFICIENTS

nur

Let us consider Cauchy problem for system (2.1) in which coefficients 2,"" are constants

" =0,a =0, v=1n,r=1n.

710—1
Ottty — ), Xj Iy Uy Z a, 82 (t,x) us(t,x), v=1,n. (3.1)
=1
ur(t,x)t=r = uo,(x), xe R, r=1,n, 0<1t<t<T, (3.2)

where ug,(x) are sufficiently smooth compactly supported functions.
Let A be roots Ay, ..., A, of equation det{(a}" (zs)z)v .1 — AI} = 0, where I is the identity

matrix of order 7, i is the imaginary unit and ReA(s) < —&y s2, s1 € R! with some constant
oo > 0.

Using the Fourier transform we can reduce the Cauchy problem (3.1), (3.2) to the Cauchy
problem for systems of differential equations in partial derivatives of the first order. For this
components 1, ..., i, solutions of Cauchy problem (3.1), (3.2) will be sought in the form of an
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inverse Fourier transform on s of unknown functions vy, ..., v;, namely
u(t,x) = F o, (t,8)](t,x) := (2m)~"0/2 / exp{i(x,s)}vr(t,s)ds,
R
0<t<t<T,xeR"r=1,n.
Taking into account the equality
ot _1[ )] = [atvr] Xjdx;, F or] = F71[—s4195,01],
82 ~u,] = F~ 1[ s2 vy, 0, F~[vy] = F1[isqvy]
we obtain for vy, ..., v, the following Cauchy problem
no— 1
dtv(t,8) Z 5i110s; Uy (£,5) Z a5k 52 vy (4,5). (3.3)
j=
vr (t,8) |t=r = vo,(s), sER™, r=1,m, 0<T< t<T. (3.4)

Since functions ug,(x) are quite smooth and compactly supported their Fourier transforms

are analytic functions for which the inequality true
lvor(s)] <ec(1+|s|)~™, s € R"™, m>no+1,
where vor(s) := Fluor(x)].

(3.5)

In problems (3.3), (3.4) s* - parameter. The system (3.3) consists of differential equations in
partial derivatives of the first order and these equations have the same basic parts. Accord-
ing to [8, p. 146-148] this system is equivalent to a homogeneous linear differential equa-
tion with first-order partial derivatives for functions w with n 4 ny independent variables

£, 81, s Sg—1, Uy s Un,

np— -1
drw + Z 5j105,w + Z a, slvraulw =0,
j= r, =1

which is equivalent to the system of ordinary differential equations:

ds1  dsy ASyy—1 duq dv,,
dt:—:—:“‘: ) 7 :”‘:n—
So 53 S
1 Y a%r 2 vy Y _agr S% vy
n=1 r=1

dsp,— .
Let us select g + n — 1 independent integrals, in this system from df = % we can find

0
Spg—1 = ESuy + €1

and from dt = 2

Spg—2 = tzsno/Z +tc1 4+ o

dsi’lo —k

. for k = 3,19 — 1 we obtain

and from dt =
ng—(k=1)

tk tk_l tk—2
Smo—k = ¥ T Tt T i)

2 + ... + Ck.

(3.6)

(3.7)

(3.8)
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Using (3.6) - (3.8), we write
tno 1 tn0—2

S = (Sl, 52,..., Sno—(k—l)"“’ Sno) = (m 1o + WC’I + e + Cno_l,...,

k=1 (k=2
Gk—Dr T k—2)
Substituting (3.9) into the system of equations

€1+ oo+ Ck—1, tSny + €1, Smp)-

dv, = Za squdt,r =1,n

we obtain the system of equations (3.10) for the characteristics of (3.6)-(3.8):

n ’ ng—1 1o o= —k
dvr(t, P(t,5ny,0)) = — Y ab (——— “Sug + Z ck 1)?vydt,
-1 (1o —1)!
where
tno—l 9 tno—k

P(t, sy, C) i= (—— = Ck_1,--s 1t , ,
(t,5ny,€) ((no—l)lsnoJrkZz (10— 1! Crk—1 Sny + €1,5ny)

with the initial condition
U (t, P(t,8ny,€)|t=r = vor (P(T,8n,,¢)), r=1,n.

(3.9)

(3.10)

(3.11)

(3.12)

Problem (3.11), (3.12) has a unique solution for 0 < 7 < t < T < +oc0. Solution of Cauchy

problem (3.16), (3.17) can be written as
v(t, P(t,8n,¢)) = Q(t, T, P(T,8ny,¢))V0(P(T, Sy, C)),

(3.13)

where Q(t, T, P(T, Sy, ¢)) is a normal matrix solutions of (3.11), Q(¢, T, P(T, $ny, €) ) |t=r = I.

Since the matrix

y po—1 1o pro—k o\n
A(t) = (—a3 ((no — 1),Sno +k22 ch—l) )r, =1

commutes with [ A(7)dT, then
T

(no k=2

t £ np—1 1o no_g
Qt, 7, PlT 50, €)) = exp{= [ AB)B) = exp{— [ (£ + Y, L

where Ay = (a5)7 ;.

ck—1)dp} ,

We use the method of mathematical induction to find ¢, k = 1,19 — 1, with (3.6) - (3.7), for

¢ is true ¢, k = 1,n9 — 1, for ¢; formula:

k

Cp = Z(_t)jsno_k+j/j!, k=1,nop.
=0

Valid, from (3.6) - (3.8) we have:
1= Sno—l - tSTlU/
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£2 £2
G = Sno - tCl - E Sno = Sn0—2 - tsno—l + ESTIQI
similar
£3 12 £2 £3
€3 = Spy—3 — 30 275m0 — 2'61 — 0 = Spy—3 — ESpy—2 + 2'sn0 1— 3'5,10,...

i —p)k-1 .
Let cx_1 = Syy—k—1 — tSp,—k42 + -+ (]-—!t)sno_kHH + ..+ %sno, then for ¢, we obtain

tk tk_l tk tk_l

— _ e _ _ _ _ . k=2
Ck = Sno—k — 750 = 1)!61 o — bCk—1 = Spy—k (k)!5n0 = 1)!(5110—1 tsu,) —t
12 (—t)i
X (Spy—2 — 1Spy—1 + isno) — oo = H(Spy—kt1 — ISpg—kq2 + o F i 7 Sug k41 T -
(-0 (0f . (p
+ mSno) = Spy—k + Sng~ 34 Il + Sny— 1@ + ...+ (—t)Sno_k+1,
so we have
k .
Ck = Z(_t)]sno—k+j/j!1 k - 1,7’1. (314)
=0

Substituting (3.14) into (3.13) we obtain
t

k k—1
oitrs) = expl=Ay (50 s/ lno = )1k LB s (0T /= 1)
j= =

T
x ((mg—1)))2dB} vo(s1 + (T — t)so + (T — 1)2%s3/2! + o+ (T — )" s, /(o — 1)1, 52
+ (T—1)s3+ .+ (T— 1) 25, /(10 — 2)!, vy Sy—1 + (T — £)Sug, Sug)-
After the reduction of similar terms in the exponent exp, we will have
t

v(t,s) = exp{—A1 /(sl +(B—t)sa+..+(B— t)”o_lsno/(no — 1)!)251/3}00(51 +T—1t)sp+ ...
+ (T 8" sy /(no — 1), 52+ (T — )53+ oo + (T — 1) %50/ (110 — 2)!, o0y Sy 1
+ (T —#)Sny, Snp )-
Find u(¢, x):

t
1 , o —
ut) = o [ explis) = Ar [ (514 (B= )52+t (B— 1" s/ (m0 = 1)1
R™ T
X vg(s1+ (T—1)sp 4 o+ (T— 1) Vs, /(g — 1)), w81 + (T — £)8ny, 1y )ds. (3.15)
Changing the variables in (3.15) by

s1+(T—Dso+ .+ (T—1)""Ls, /(no— 1) = &y,
So+ (T—t)sp+ o+ (T— )25,/ (n9g —2)! = &y,
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Sng—1 1 (T —1)Sny = &y—1;

Sno - D‘nol
or
$1 = &1 — (T — t)le + ...+ (_1)n—l wa
s (no . 1)! no’
So =y — (T — t)DCg + ..+ (_1)n—2 (T — t)”o_zano/(no — 2)!,
S = N — (T - t)lxk+l + ...+ (_1)n0—k (T - t)”o_k/(no - k)!,
Sno—l - “no—l - (T - t)“nof
Sno - D‘nol
we obtain
1 . . . 2
w6 = G / exp {izx1 + o (x2 — (T — D)x1) + s (x5 — (T — D)xa + (T — 1)2x1/2!)
R0
no— 1
+ +wckz U xe (T =tV /U + o tinn, Y (—1) xyg—i(T— 1) /]!

j=0
t

— A /(ocl +(B—T)ao+ (B—1)%a3/2!1 + ... + (B— 1) Loy / (n9 — 1)1)?dB }vo(a)da.

T

vo(a) = Fug(x), since
u(t,x) = /R Gt =T, x = & x)ug(8)dE, (3.16)

where G(t — T,x — ¢, x) is the fundamental solution of Cauchy problem and has the form:

G(t—1,x—&x)

@m)~ [ explina(x — 1) +ina(v2 = 82— (T — t)x)

+ ing(Xg — ({3 — (T — t)XQ + (T — t)2x1/2!) +
+ (Y (1) x (T =) /= G) +
j=0
np—1 . . t
bt (Y (= 1) (T — )1/ — Eug) —/ (1 + (B — T)ota + ...
j=0 v

+ (B—1)" Yup,/ (ng — 1)!)%dB}da. (3.17)
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4. THE STUDY OF BEHAVIOR OF THE FUNDAMENTAL SOLUTION OF CAUCHY PROBLEM

In order to investigate the behavior of G(f — 7, x — {; x) we compute integral
t
- /(0(1 (B Ts et (B— ) ay, / (10 — 1)1)2dB. 4.1)

T

Having replacement ( — 7)(T —t)~! = 6, we obtain

1
/a1+9 F T o 0T (= ) Ny /(g — 1)1)2d0(¢ — 7).
0

Denoting

oq(t—r)%:sl, w(t—T)2 =53, .., uck(t—T)ZkZ;l/(k—l)!:sk, v

we have

1
I = /0(sl+952+...+9”0—1sn0)2d9:s%+s§/3+s§/5+...+550/(2n0—1)

1o 1y 10
+ 2) s15i/j+2) sosi/ () 4+ +2 Y spsi/(k+j—1)+
=2 =3 j=k+1
+ ZSno_lsno/(Zno - 2). (4.2)

In (4.2) to select the perfect square s1, 5y, ..., 55, will have:

- 2o (j—1)s; 1 & 5300k —1)(k—2)
h= (].Z%Sf/])er?’(]g j(j+1)])2+180(k23 kk(k+1)(k+2) ?

m s (k— 1) (k —2)(k — 3)
+ (Z ek + 1) (k+ 2)(k+3)

20 Sk(k — 1)(k — (no — 2))

+ (2n0 - 3)(k2_1 k(k+1)...(k+mno —1)

B s k—1).k— (1))
)2+...+(2]—1)(k2j kk(k+1)...(k+j—1) 2+ .

(no — 1)2(710 — 2)2“‘22
)+ (210 — 1)55n5(no +1)%..(2n0 — 1)

(4.3)
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Using (4.3) G(t — T, x — &; x) written as:

Git—1t,x—Cx) =

Consider the system

(2r)~"0 / exp{is1(xg — &) (¢t — T)_l/2 +iso(xp — & — (T—1#)x1)
R0
(t—T)732 4 2isz(x3 — &3 — (T— Dxo + (— 7)1 /20 (= 7) 72 4 ..

k-1

(k= Dtise (Y (= 1w (T = £)//jt = &) (£ — 1) 712K/
j=0

710—1

s (), (= 1) % (T = )/ = G ) (£ = ) 720702 (g — 1)1
j=0

b LWl ms(-1(-2).,
AL/ D73 Sy S G )

s 1) -kt 1)
(2 1)(].2,:( jG+1)..(+k—1)

24 .+ (210 —3)

(3 SULAUZ OB | gyl =Dy

j=ng—1 j+ 1) (G + 10 —2) no...(2ng — 1
(t—1)7"/221...(ng — 1)! (4.4)
1y .

Z i = X1,
=17
& (- 1)5]
— =y,
,g jG+1) ~
sl =KD
S0+ +k=-1)
Sng—1 (nO - 2)! Sno(no — 1)' -
(no — 1) ..(2710 — 3) no (Zno — 2) no—1
Smo(no— 1)1
no ..(21’10 — 1) Ko (4'5)

If we solve (4.5) we obtain
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51 =1 — 30y + 503 — 7ag + ... + (—=1)"0 (2 — Dy,

s2 4.7 4.5.9 4.5.6-11 (—1)m0=2
ﬂ = Ky — 50(3 + 1 g — 31 o5+ a1 &g+ ...+ m4 . 51’10(21’10 — 1)0(;10,
sp(k—1)! 2k(2k + 3 2k(2k +1)(2k + 5
7k...((2k—)1) = — (2k+ Dy + 2K(2k +3) o )“k+2 - 3?( )“k+3
2k(2k +1)(2k +2)(2k + 7 —1)7R2k(2k + 1)...(j +k —2)(2j —
D@2 @k7) )T D). (k2@ )
41 (j—k)! /
(—1)"0=k2k(2k 4 1)...(no + k — 2)(2np — 1)
+ DCTZQI
(no —k)!
Sng—1(10 — 2)! _ B B
(o — 1)y —3) o1~ Fu(2n0 = 1),
Smo(no— 1)1 .
1’10...(21’10 —1) o
With this system we find si(k — 1)!, k = 1, np and substitute in (4.4).
i
Gt—1,x—&x) = (2m)™™ /exp{—A1 Y (2k — D)ag +i[ag — 3ap + 5ag + ...
o k=1
+ (—1)”0_1 (2ng — 1)0cn0](x1 — &) (t— T)_l/z +2-3(t— T)_3/2(XQ )
, 4.7 4.5.9 (—1)m—2
— (T—t)xl)z[a2—5a3+7a4— 3l a5+...+m4~5...
X 1o(2np — Day,] + k. (2k — 1) (8 — 7)1/ 240 — 2k + 1)y yq
2k(2k + 3) 2k(2k +1)(2k + 5) 2k(2k +1)(2k+2)(2k+7)
T oo M2 3 X t3 al R4
—1)7k2k(2k +1)...(j +k—2)(2j — 1
G Vi e S VRNV T/ VO
(j—k)!
(—1)"™0 = 2k(2k 4+ 1)...(no + k — 2)(2np — 1)
+ “no]
(no —k)!
ko—1 , ,
(Y (=g (T =)/ = Gk) +
=0
+ no(ng +1)..(2ng — 1) (¢t — 1)~ @0~ D/ 2y
710—1 . .
< (0 (1Y xugi (7= O]/ = ) Yo ( — 1) 72
=0

x ﬁk(k+1)...(2k—1). (4.6)
k=1
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In (4.6) with respect to group the similar terms &, we have:

Git—1,x — &x)=2m)™™ / exp{—A4A1 ﬁ(Zk—l)aiJrioq(t—r)_l/z(
o k=1

x1—G1)

+ o (t— 1) 73260 — o+ (1 + &) (t — 1) /2] +ias(t — T) 7> 260[x3 — 3
+ (t=T)(x2+E2) /24 (t—1)2(x1 — &1) /12] + 1540ing(t — 1) 7/ 2 [x4 — &4
+ (3 +E)E—T)/2+4 (x2— &)t —T)2/10 + (t — 7) (21 + &1)/120] +

7101

+ no(no +1)...(2n0 — 1)iay,| Z Xng—i(t =TV /] — Eng — (t—T)

710—2

< (Y i1 (E =TV /= Engor) + (t—T)?
=0

710—3

(Y Xugojma(t =TV /] — Eng—2) (n — 2) /4(210 — 3) + ...
j=0

t— 1)k 2k (2k 4+ 1)...(2k + (ng — k) — 2)(2k + 2(ng — k) — 1)

_ymo-k €
+ (-1) k (no — k)! no...(2np — 1)

k-1 o (=) -+ (t—T)n)

(Y it =T/t = Gp) A (—1)(m=2)
i=0

n (_1)(110—1) (t — T)(no—l)(xl - gl)]}dlx(t - T)—n%/2 ﬁk(k 4+ 1)

1’10...(21’10 — 2)

Remark 1. Each coefficient of the i, can be reduced to the form:

o (t — 7) "V 2 (2 — 1) [ — &+ (E— T) (Y1 + Exe1/2) + oo+ (X0
i 2j(2j+ 1) (k+j—2)

2(n+1)..(2n —3)

(2k — 1).

(4.7)

— (=1)/&))

1

x (t— 1) T2k —2) ot (g = (D) (1 - T)k_l]'[k(k +1)...(2k — 2)]

= iogk...(2k — 1) [xg — &+ (= T) (ko1 — Ek=1) /24 o+ (0 — (1) Ey)

(G4+1)..(k+j—2) (x1 = (D8 (- )
x (t_T)(j—l)!(k—1)k...(2k—3) = 2(k—1)k.~22k—3) !

From (4.7) it follows: G(t — T, x — &; x) is the Fourier transform of

g

L(o) =exp{—A1 } (2k—1)az}, o € R™,
k=1

according to selected points, with parabolic [9], we obtain estimates for I;(« +if),x € R™, €

7
R™,
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ny no
|[(x+iB)| < Cexp{—co ), a2 4 )y B2},

k=0 k=0
where positive constants C, ¢y, ¢ depends on 1y, 11, constant parabolic &, : max |a |.
<r,

Fourier transform of I; is an entire function for which the derivatives satlsfy estimation at
t>T1,x € R, e R":

lnG( — ¥ — Ex)] < Ot — )2 exp e [xr — 1 P41t — 7)1 + 3]s — &
+ (=) (1 +1) /2P (= 1) 7+ 180|x3 — &3+ (x2 + ) (£ — 1) /24 (t — 1)*(x1
— &)/12P(t = 1) +25200|x4 — &a + (x5 + &) (t — 7)/2+ (t = 7)*(x2 — £2) /10

+ (+E)(E—=1)3/1202(t = T) 7 + o+ (k— 1)K (2k — 3)%(2k — 1) (¢t — 1) 3D
k—1 k=2

<L (= TV = = (= DL et =T /= G /2
N (7_1),{_1 (t(k_—T)lI;!_l 2121 +1)...(21 +](]1§...(2<21))(21 +2(k—1)—1)

X (Zi x_j(t= T/ = &)+t (=D ;(1?4:2)(22; 525 (t—1)x1)
+ ( 2 ,(c z Rk 1)(x1 “ER (g — )P0+ 1P (200 — 3)?

nlnol

ano —j t_T)]/]'_gn

x (2ng—1)(t—1)"

710—2 .
e =T Swpa (= TV~ Gy /24 (T
j=0
np—3 ] (nO . 2)

< (Y xupmaj(t =T/t = Enya) ot (1)
j=0

4(2710 — 3)

t— T)no_k 2k...(n0 +k— 2)
(no—k)!'  ng...(2ng — 2)

k-1 . (
()Y et —=T) /1= 8k)
=0

k—1 - no— (t—T)"02(xp — &+ (t —T)x1)
X (]Z(:)xk_j(t—T)f/].—Ck)+...+(—1) ? 2(n0—|—i)...(22n0—3) :
R G L € Cl)]z

_|_

no...(2np — 3) (48)

where positive constants Cy,, ¢ dependent no, j, m,6,sup |ay’|, T,j = 1,no. After remark 1,
r,v

formula (4.8) can be written as follows
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oGt

+ + 4+ + + + x

X

n2 i—1)m

T2 — Ex)| < Conlt— 1)~ T exp{—ch[|x1 — 12471t — 7)) + 3 — &
(1 + )27t =D))P(t—1) 2 +180|x3 — 83+ (xo + &) (E—T) /2 + (£ — 7)?
(x1 — &1)/1212(t = T) > +2520|x4 — 4+ (x3+ &) (E— 1) /2

(t—1)*(x2 — £2)/10+ (x1 + &1)(t — T)° /1202 (t — 7) 7 + ..
(k—1)2..(2k = 3)2(2k — 1) (t — T) " P Vo — & + (£ — 1) (1 + 1) /2 +
(ke = (=18 (= TV + 1)k 4+ = 2)/ (j = D!k — Dk...(2k — 3) +
(x1 — (=D 'z (= o)/ 20k — Dk...(2k — 3))]* +

(o — 1)%..(2m0 — 3)*(2np — 1) (t — 7) 0 D, — &y,

(Xng1 + Enp—1) (= T)/2+ .+ (t = 7)™ (g — (=1)™7&1) / (2(no — 1)
(2n0 —3))]*]},t—7>0,x € R™, & € R",m € NU{0}.

Remark 2. Estimates (4.8) are exact, because for system considered one equation n =1

710—1

_
dru(t, x) — ]Z% X0y 1114(t, x) = E)x%u(t,x)

we obtain G(t — T, x — &;x) att > 7, in the form

Gt —

X X X 4+ X 4+ 4 X

_|_

2ng—

1
(t—1)"" 7 exp{—|xg — & |47

Nl—

ny 0
x—Fx) =277 [Tk(k+1)..(2k—1)~
k=1

(t—1) 1 =3|xy — &+ (v + &2 (= 1)2(t — 1) 73 — 180|x3 — &3

(x0 4+ &) (t— )27 + (t — ) (21 — E1)127 12 (£ — 7)™ — 2520| x4 — &4

(x34+ &) (t— )27 + (t— 1)% (20 — &)107 1 + (31 + &1) (¢ — 1)%1207 12

(t—1)7 — . =K% (2k = 3)(2k — 1) (t — 7) "D |x — &

(=) (1 4 Gx-1)27 + oo (s = (DG (E =T+ 1)

(k+7—2)/(— Dk = Dk..(2k = 3) + ... 4+ (x1 — (=) 1) (t — 1) !

(2(k = Dk...(2k=3))" 112 — .. — #d.. (2n0 —2)%(2ng — 1)(t — 7)1

Xy — Cnp — (Xng—1 + Cno_l)(t —1)27 ..

(t =) (x1 — (=1 7161) (2(n0 — 1)...(210 — 3)) ' P} (4.9)

In particular, from (4.9) with x = x1, xo =y, (n9 = 2) have FSCP for the diffusion equation
with inertia if 7y = 2,5 obtain the results of [10-12]. Repeating the arguments of this work for
the equation

&
=
~—~
Ny
Y
S
|
7=
Y

W-awi Zazzutx + Z azsutx)t>r
i—1 v=p+1

]
X = (‘xlll“‘l xlnl;x2l/"'/ x2n2} -xpl/'“/ xpnp} (p+1)1"“’ -xml)l
nlznzz...ZnP>1,p>1,m2p,
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we obtain an analogue of the formula (4.9):
2ny—1+4+m—p 7t

Gt — T,x—Cx) = ﬁ(Z\/E)”V+m_p(t —-T)7 7 ﬁk(k +1)...(2k — 1)_%

v=1 k=1

P
< exp{— Y [lx — &4t — 1) 4 3lv2 — Go + (X +En)27 (- TPt —T)
j=1

+ 180|xy3 — &ua + (xp2 + &) (t — T)Z_l + (t— T)z(xvl — €V1)12_1|2( — )_5

+ 2520|xy4 — Gug + (X3 + Es) (E— )27+ (£ — 1)%(x0n — E2) 107+ (301 4 Eo1) (£ — T)
< 12072t — )T 4 K2k = 3)2(2k — 1) (t— )T D g — B+ (= T) (3
P T S
X (2k =3) 4 o4 (v — (=D 1EN (=) 2% — Dk (2k = 3) 712 4 L+ 12
x(2my = 2)2(2ny = 1)(t = 1) PV, — Gum, — Xy (my—1) + Sum—1))(E — 727 4.
+ (=0 (= (D)™ TE0) (20 = 1) 20 = 3) TP = Y0 i — EnlP4T

v=p—1

p
X (t—r)_l},xeR”, e R n= vaer—p.

v=1
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SYMMETRIC POLYNOMIALS AND HOLOMORPHIC
FUNCTIONS ON INFINITE DIMENSIONAL SPACES

1.V. Chernega

Abstract. A survey of general results about spectra of uniform algebras of symmetric
holomorphic functions and algebras of symmetric analytic functions of bounded type on
Banach spaces is given.

Keywords: polynomials and analytic functions on Banach spaces, symmetric polynomials,
spectra of algebras.

1. Symmetric Polynomials on Rearrangement-lnvariant Function Spaces

Let X, Y be Banach spaces over the field K of real or complex numbers. A mappingP : X *
Y is called an n—homogeneous polynomial if there exists a symmetric n-linear mapping A : Xn~ Y
such that for all x e X P (x) = A(x,..., X).

A polynomial ofdegree n on X is a finite sum of k-homogeneous polynomials, k= 0,..., n. Let
us denote by P (nX, Y) the space of all n-homogeneous continuous polynomials P : X ~ Y and
by P (X, Y) the space of all continuous polynomials.

It is well known ([13], X1 852) that for n < ro any symmetric polynomial on Cnis uniquely
representable as a polynomial in the elementary symmetric polynomials (Gi)n=1, Gi(x) =
NKl<s—<dxki ... xKi.

Symmetric polynomials on £pand Lp[0,1] for 1 < p < ro were first studied by Nemirovski
and Semenov in [16]. In [11] Gonzalez, Gonzalo and Jaramillo investigated algebraic bases of
various algebras of symmetric polynomials on so called rearrangement-invariant function
spaces, that is spaces with some symmetric structure. Up to some inessential normalisation,
the study of rearrangement-invariant function spaces is reduced to the study of the following
three cases:

1. 1 = Nand the mass of every point is one;

2. 1 = [0,1] with the usual Lebesgue measure;
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3. I = [0, 00) with the usual Lebesgue measure.

We shall say that ¢ is an automorphism of I, if it ia a bijection of I, so that both ¢ and ¢~ ! are
measurable and both preserve measure. We denote by G (I) the group of all automorphisms of
1. 1f X(I) is a rearrangement-invariant function space on I and f € X(I), then f is a real-valued
measurable function on I and f oo € X(I) for all ¢ € X(I). Also, there is an equivalent norm
on X(I) verifying that

Ifooll = £l

forallo € G(I) and all f € X(I). We always consider X(I) endowed with this norm.
Following [16], we say that a polynomial P on X(I) is symmetric if

P(foa)=P(f)
foralloc € G(I) and all f € X(I).
In the same way, if Gy is a subgroup of G(I), a polynomial is said to be Gy-invariant if P(f) =
P(foo)forallo € Gyand all f € X(I).
Let X(I) be a rearrangement-invariant function space on I and consider the set
J(X) ={reN:X(I) C L,(I)}.
Note that if 7(X) # we can consider, for each r € J(X), the polynomials

P(f)= [ f.
These are well-defined symmetric polynomials on X(I) and we will call them the elementary

symmetric polynomials on X (I).

1.1. SYMMETRIC POLYNOMIALS ON SPACES WITH A SYMMETRIC BASIS

Let X = X(N) be a Banach space with a symmetric basis {e,}. A polynomial P on X is
symmetric if for every permutation o € G(N)

P ( Ii aiei> =P ( Ii aieg(i)> .

We consider the finite group G,(N) of permutations of {1, ..., n} and the o-finite group Go(N) =
UnGn(N) as subgroups of G(N). By continuity, a polynomial is symmetric if and only if it is
Go(N)-invariant. Indeed, if P is Go(N)-invariant and ¢ € G(N),

P(ia&-) = nh_r)r;oP<li aiei> = nh_r)r;()P(i% aieg(i)> = P(li aieg(i))

Recall that a sequence {x;} is said to have a lower p-estimate for some p > 1, if there is a
constant C > 0 such that

n

1/p n
C(Z|ai|P> < Hzaixi
i=1

i=1

forallay,...,a, € R.
Note that X C /, if and only if the basis has a lower r-estimate, and therefore we have in this
case
J(X) ={reN:{e,} hasalowerr-estimate}.
Now we define

n0(X) = inf 7(X),
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where we understand that the infimum of the empty set is co. The elementary symmetric poly-
nomials are then

2 ( )y aiei> =) 4,
i1 i1
where r > no(X).

Theorem 1.1. [11] Let X be a Banach space with a symmetric basis ey, let P be a symmetric polynomial
on X and consider k = deg P and N = no(X).

1. Ifk < N, then P = 0.

2. If k > N, then there exists a real polynomial q of several real variables such that

P(ligi@) :q(liaf\],...,lia;()

for every Y :° 1 aje; € X.

1.2. SYMMETRIC POLYNOMIALS ON X[0,1] AND X]0, )

Let X[0, 1] be a separable rearrangement-invariant function space on [0, 1]. Note that the set
J (X) is never empty since we always have X[0,1] C L1[0, 1].
We define

Heo(X) = sup{r € N: X[0,1] C L,[0,1]}.

Therefore the elementary symmetric polynomials on X|[0, 1] are

1
P =[ r
for each integer r < n(X).

Theorem 1.2. [11] Let X[0,1] be a separable rearrangement-invariant function space on [0,1] and
consider the index ne(X) as above. Let P be a Gy|0, 1|-invariant polynomial on X[0,1] and let k =
deg P. Then there exists a real polynomial q in several real variables such that

Py =a( [ £ [ )

forall f € X, where m = min{ne(X),k}.

Theorem 1.3. [11] Let X[0, 0o) be a separable rearrangement-invariant function space, let P be a Go-
invariant polynomial on X[0, 00) and consider k = deg P. Let ng and n be defined as above.

1. If either ng > teo, or k < ng < oo, then P = 0.

2. If ng < neo and no < k, then there is a real polynomial q in several real variables such that

P =a( [ 1 1),

where m = min{#e, k}.
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2. UNIFORM ALGEBRAS OF SYMMETRIC HOLOMORPHIC FUNCTIONS

Let X be a Banach sequence space with a symmetric norm, that is, for all permutations ¢ :
N — N, and x = (x,) € Balso (xg(l),. e r Xy .) € B, where B is an open unit ball.

A holomorphic function f : B — C is called symmetric if for all x € B and all permutations
0 : N = N, the following holds:

fxa, e xn ) = f(Xo@yr - Xopmy - o)
Our interest throughout this section will be in the set
Aus(B) = {f : B— C|f is holomorphic, uniformly continuous, and symmetric on B}.
The following result is straightforward.

Proposition 2.1. [4] Aus(B) is a unital commutative Banach algebra under the supremum norm. Each
function f € A,s(B) admits a unique (automatically symmetric) extension to B.

Let us give some examples of A,s(B) when B is the open unit ball of some classical Banach
spaces X.

Example 2.2. X = .

Theorem 2.3. [5] Let P : ¢ — C be an n-homogeneous polynomial and ¢ > 0. Then there is N € N
and an n-homogeneous polynomial Q : CN — C such that for all x = (x1,...,%XN,XN1,---) € B,
IP(x) — Q(xq,...,xN)| <e.

Corollary 2.4. [4] For alln € N, n > 1, the only n-homogeneous symmetric polynomial P : ¢ — C is
P=0.

Since any function f € A,s(B) can be uniformly approximated on B by finite sums of sym-
metric homogeneous polynomials, it follows that 4,(B) consists of just the constant functions
when B is the open unit ball of cy.

Example 2.5. [4] X =/, for some p, 1 < p < c0.

The linear (n = 1) case. Let ¢ € £}, be a symmetric 1-homogeneous polynomial on /,; that is, ¢
is a symmetric continuous linear form. Since ¢ can be regarded as a point (y1,...,Ym,--.) € £},
and since y; = @(er) for all j, we see that y; = ... = y, = .... Therefore, the set of symmetric
linear forms ¢ on /1 consists of the 1-dimensional space {b(1,...,1,...)|b € C}. For p > 1, the
above shows that there are no non-trivial symmetric linear forms on £,.

The quadratic (n = 2) case. Let P : £, — Cbe a symmetric 2-homogeneous polynomial, and let
A L, x 1, — Cbe the unique symmetric bilinear form associated to P, using the polarization
formula and P(x) = A(x,x) forall x € £,. Now, P(e1) = P(e;j) for all j € N. Moreover,

Ple1+e) = Ale1+eye1+e)=A(er,e1)+2A(e1,ex) + Aley, e2)
= P(e1) +2A(e1,e2) + P(en)
and likewise
P(e;+ex) = P(ej) +2A(ej, e) + Pler),
for all j and k € N. Therefore A(e;j, ex) = A(ey, e2).
So, for all N,

N
P(xl,...,xN,O,O,...) = IZZX]Z—FbZijk,
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where a = P(e1) and b = A(ej, e).
From this, we can conclude, that for X = ¢;, the space of symmetric 2-homogeneous poly-
nomials on /1, Ps(2£1), is 2-dimensional with basis {Y; x]z,z]'7ék xjxXi}. On the other hand, the

corresponding space Ps(%/;) of symmetric 2-homogeneous polynomials on #;, is 1-dimensional
withbasis {1 x3}. For 1 < p < 2, Ps(*£,) is also the one-dimensional space generated by }; x?,
while Ps(%4,) = {0} for p > 2.

This argument can be extended to all # and all p, and we can conclude that for all #, p, the
space of symmetric n-homogeneous polynomials on £,, Ps("£,), is finite dimensional. Conse-
quently, since for all f € A,s(B), f is a uniform limit of symmetric n-homogeneous polyno-
mials, we have reasonably good knowledge about the functions in .A,s(B). So we can say that
Aus(B), for B the open unit ball of an £, space, is a "small" algebra.

2.1. THE SPECTRUM OF A,,(B)

Recall that the spectrum (or maximal ideal space) of a Banach algebra A with identity e is the set
M(A)={p: A—C |¢p isahomomorphismand ¢(e)=1}. We recall thatif ¢ € M(A),
then ¢ is automatically continuous with ||¢|| = 1. Moreover, when we consider it as a subset of
A* with the weak-star topology, M(.A) is compact.

We will examine M (Ays(B)) when B = By,. The most obvious element in M (Auys(B)) is the

evaluation homomorphism &, at a point x of B (recalling that since the functions in A,(B) are
uniformly continuous, they have unique continuous extensions to B). Of course, if x,y € B are
such that y can be obtained from x by a permutation of its coordinates, then &y = §,,. It is natural

to wonder whether M (A,s(B)) consists of only the set of equivalence classes {Jz|x € B}, where
x ~ y means that x and y differ by a permutation.

Example 2.6. [1, 4]

For every n € N define F, : B — Cby F,(x) = L x. To simplify, we take B = By, (so
that F, will be defined only for n > 2). It is known that the algebra generated by {F,|n > 2} is
dense in A,5(B). For each k € N, let

v = —=(e1 + ... +e).

1
Vk
It is routine that each vy has norm 1, that 6, (F,) = 1for all k € N, and that for all n > 3,

1
———k = 0ask — co.
(VK"

Since M (Ays(B)) is compact, the set {J,, |k € N} has an accumulation point ¢ € M (.A,s(B)).
It is clear that ¢(F,) = 1 and ¢(F,) = 0 for all n > 3. It is not difficult to verify that ¢ # J, for

every x € B. This construction could be altered slightly, by letting v, = ﬁ(alel + oot ager),

where each |a;| < 1. Thus, with this method we give a small number of additional homomor-
phisms in M(.A,s(B)) that do not correspond to point evaluations.

5vk(Fn) = Fn(vk) =

It should be mentioned that it is not known whether M (Ays(By,)) contains other points.
However, in [1] was given a different characterization of M (Aus(By,)). In order to do this, we
first simplify our notation by considering only B, . For each n € N, define 7" : By, — C" as
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follows:

F'(x) = (F(x),..., F(x)) = (ij,...,Zx;?).
Ji J

Let D, = F"(By, ), and let [D;] be the polynomially convex hull of D, (see, e.g., [12]). Let
Y1 = {(bi)i21 € leo : (b)7 1 € [Dy], forallm € N.}
In other words, X1 is the inverse limit of the sets [D,,], endowed with the natural inverse limit
topology.
Theorem 2.7. [1, 4] X1 is homeomorphic to M (Aus(By,)).

The analogous results, and the analogous definitions, are valid for 2, and M (Aus(By,)).

The basic steps in the proof of Theorem 2.7 are as follows: First, since the algebra generated
by {Fuln > 1} is dense in A;s(By, ), each homomorphism ¢ € M (Ays(By,)) is determined
by its behavior on {F,}. Next, every symmetric polynomial P on /1 can be written as P =
Q o F" for some n € N and some polynomial Q : C" — C. Finally, to each (b;) € X1, one
associates ¢ = @) : Aus(Be;) = Cby @(P) = Q(b1, - .., bu). This turns out to be a well-defined
homomorphism, and the mapping (b;) € £1 ~ @, € M(Aus(By,)) is a homeomorphism.

2.2. THE SPECTRUM OF A,;(B) IN THE FINITE DIMENSIONAL CASE

Let us turn to .4,5(B), where B is the open unit ball of C", endowed with a symmetric norm.
Because of finite dimensionality, A,s(B) = As(B), where A(B) is the Banach algebra of sym-
metric holomorphic functions on B that are continuous on B.

Unlike the infinite dimensional case, the following result holds.

Theorem 2.8. [1, 4] Every homomorphism @ : As(B) — C is an evaluation at some point of B.
We describe below the main ideas in the proof of this result.

Proposition 2.9. [1, 4] Let C C C" be a compact set. Then C is symmetric and polynomially convex 1f
and only 1f C is polynomially convex with respect to only the symmetric polynomials.

In other words, C is symmetric and polynomially convex if and only if

C={z0€ C":|P(z0)] <sup|P(z)|, for all symmetric polynomials P}.
zeC

Fori € N, let
Ri(x) = Y Xiey *

17 Xk
1<k <. <ki<n

7

Proposition 2.10. [1, 4] Let B be the open unit ball of a symmetric norm on C". Then the algebra
generated by the symmetric polynomials Ry, ..., R, is dense in As(B).

Lemma 2.11. (Nullstellensatz for symmetric polynomials)[1, 4] Let Py, ..., Py be symmetric polyno-
mials on C" such that
kerPiN---NkerP, =@.

Then there are symmetric polynomials Q1,. .., Qu on C" such that

m
Y PQi=1
j=1
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To prove Theorem 2.8, let us consider the symmetric polynomials P; = Ry — ¢(R1),..., Pu =
Ry — @(Ry). If ker Py N - - - Nker Py, = @, then Lemma 2.11 implies that there are symmetric
polynomials Qy, ..., Qm on C” such that } ;' ; P;Q; = 1. This is impossible, since ¢(P;Q;) = 0.
Therefore, there exists some x € C" such that Pj(x) = 0 for all j, which means ¢(R;) = R;(x)
for all j. By Proposition 2.10, ¢(P) = P(x), for all symmetric polynomials P : C" — C.

So, for all such P, |¢(P)| = |P(x)| < ||P]|. This means that x belongs to the symmetrical

polynomial convex hull of B. Since B is symmetric and convex, it is symmetrically polynomially
convex (by Proposition 2.9). Thus x € B. [

3. THE ALGEBRA OF SYMMETRIC ANALYTIC FUNCTIONS ON Ep

Let us denote by Hy,(£,) the algebra of all symmetric analytic functions on £, that are bounded
on bounded sets endowed with the topology of the uniform convergence on bounded sets and
by Ms(£,) the spectrum of Hy,s(£,), that is, the set of all non-zero continuous complex-valued
homomorphisms.

3.1. THE RADIUS FUNCTION ON M, (£,)

Following [3] we define the radius function R on M,(£,) by assigning to any complex ho-
momorphism ¢ € My,(£,) the infimum R(¢) of all r such that ¢ is continuous with respect to
the norm of uniform convergence on the ball rBy,, that is [¢(f)| < C;|/f||;. Further, we have

[P < 1flIrep)-

As in the non symmetric case, we obtain the following formula for the radius function

Proposition 3.1. [6] Let ¢ € Ms(€,) then
R(¢) = limsup [|ga'/", (3.1)
n—oo

where ¢, is the restriction of ¢ to Ps("Lp) and ||pu|| is its corresponding norm.

Proof. To prove (3.1) we use arguments from [3, 2.3. Theorem]. Recall that
1]l = sup{[pn(P)| : P & Ps("y) with [ P|| < 1}.

Suppose that
0 < t < limsup ||¢n||*".
n—oo
Then there is a sequence of homogeneous symmetric polynomials P; of degree n; — oo such
that || P;|| = 1 and |¢(P;)| > 7. If 0 < r < t, then by homogeneity,
IPill; = sup [Pi(x)] =7,

xEngp
so that
(P > (¢/7)5 [ Bl
and ¢ is not continuous for the || ||, norm. It follows that R(¢) > r, and on account of the
arbitrary choice of r we obtain
R(¢) > limsup [[¢u] /™.

n—oo
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Let now be s > limsup ||, ||'"

n—oo
that || || < cs™ for every m. If r > s is arbitrary and f € H,(£,) has Taylor series expansion

f - Z fn, the].’l
n=1

so that s™ > ||¢w]|| for m large. Then there is ¢ > 1 such

"\ full = N fllr < Iflls, m>0.
Hence

B(n)] < lpmll ol < 1A

and so

lo(Hl < (TSI

Thus ¢ is continuous with respect to the uniform norm on rB, and R(¢) < r. Since r and s are
arbitrary,

R(¢) < limsup || "/".

n—oo

3.2. AN ALGEBRA OF SYMMETRIC FUNCTIONS ON THE POLYDISK OF /;

Let us denote

D= {x =) xje; € £1: sup x| < 1}.
i—1 i

It is easy to see that ID is an open unbounded set. We shall call D the polydisk in /1.
Lemma 3.2. [6] For every x € ID the sequence F(x) = (Fi(x) )34 belongs to ¢1.

Proof. Let us firstly consider x € /1, such that ||x|| = Y771 |x;| < 1 and let us calculate F(x) =
(Fe(x))521- We have

IF@I = ¥R = Y| Eat
k=1 i=1

k=1

(o 0] (o 0] k
<Y Y x]
k=1i=1

k=1 "i=

In particular, || F(Ae)|| = 4l for |A] < 1.
If x is an arbitrary elementinDD, pick m € Nsothat Y |x;| < LPutu =2x—(x1,...,2,,0...)
i=m+1
and and notice that Fi(x) = Fe(x1e1) + - - - + Fe(xmem) + Fe(u) with [[xge|| < 1L, k=1,...,mas

well as ||u]| < 1. Also, || F(xxer)|| < 1!’|C|UC°|‘|’OO Hence,

|7 = | kmzl Flxge) + Flu)|| < kmzl 1 G | + |1 F ()] < oo.
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Note that F is an analytic mapping from DD into /71 since F(x) can be represented as a con-
vergent series F(x) = Y Fi(x)ex for every x € D and F is bounded in a neighborhood of zero
k=1
(see [9], p. 58).

Proposition 3.3. [6] Let g1,§2 € Hp(l1). If §1 # &2, then there is x € D such that g1(F(x)) #
2(F(x))-
Proof. It is enough to show that if for some ¢ € H,(/1), we have g(F(x)) = 0 Vx € D, then
g(x)=0.

Let g(x) = i Qun(x) where Q, € P("#1) and
n=1

- K
Qn( )y Xi€i> = ) Y uirinX e xi-(,f.
n=1 kitotky=nig<..<iy
For any fixed x € Dand ¢ € Csuch that tx € I, let g(F(tx)) = 1°4 t/rj(x) be the Taylor series
at the origin. Then

L QulF(1) = 5(F (1) = - ).
n—= ]:

Let us compute r,(x). We have

()= Y e () E(x). (32)

k<m
k1i1+...knin:m

It is easy to see that the sum on the right hand side of (3.2) is finite.

Since ¢(F(x)) = 0 for every x € D, then r,,(x) = 0 for every m. Further being Fy, ..., F,
algebraically independent g; ;, ;, = 0in (3.2) for an arbitrary k < m, k1i1 + ... + kniy = m. As
this is true for every m then Q, = 0forn € N.So ¢(x) =0 on /1. O]

Let us denote by H (D) the algebra of all symmetric analytic functions which can be repre-

sented by f(x) = g(F(x)), where ¢ € H,(f1), x € D. In other words, H! (D) is the range of the
one-to-one composition operator Cx(g) = g o F acting on H(£1). According to Proposition 3.3

the correspondence ¥ : f — g is a bijection from HE(D) onto H,(£1). Thus we endow HS! (D)
with the topology that turns the bijection ¥ an homeomorphism. This topology is the weakest

topology on H.(D) in which the following seminorms are continuous:

g (f) = 1FUD - = liglly = sup [g(x)], reQ

llxlley <

Note that ¥ is a homomorphism of algebras. So we have proved the following proposition:

Proposition 3.4. [6] There is an onto isometric homomorphism between the algebras Hfl(]D) and
Hp(l1).

Corollary 3.5. [6] The spectrum M ( S(DY) of H (D) can be identified with My (¢1). In particular,
t C M(HE(D)), that is, for arbitrary z € {1 there is a homomorphism , € M(H (D)), such that

¥=(f) = ¥()(2).
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The following example shows that there exists a character on #.!(ID), which is not an evalu-
ation at any point of I.

Example 3.6. [6] Let us consider a sequence of real numbers (a,), 0 < |a,| < 1 such that (a,) €

l>\ 1 and that the series ) a, conditionally converges to some number C. Despite (a,) ¢

n=1
/1, evaluations on (a,) are determined for every symmetric polynomial on /1. In particular,
F((an)) = C, F((an)) = Lal < oo and {F((an))}$° 4 € f1. S0 (an) “generates” a character on

(D) by the formula ¢(f) = ¥(f)(F((an)))-
Since (a,) € £, then Fy((a,(s))) = Fe((an)) ,k > 1. Notice that there exists a permutation on

(o]
the set of positive integers, 7, such that ) | Ar(n) = C’ # C. For such a permutation 7 we may

n=1
do the same construction as above and obtain a homomorphism ¢, “generated by evaluation

at (ax(n))", ¢(f) = ¥ (f)(F((arm))):
Let us suppose that there exist x,y € D such that ¢(f) = f(x) and ¢x(f) = f(y) for every

function f € H(D). Since ¢(F) = @x(F), k > 2, thenby [1] Corollary 1.4, it follows that there
is a permutation of the indices that transforms the sequence x into the sequence y. But this can-
not be true, because Fi (x) = ¢(F) # ¢»(F1) = F1(y). Thus, at least one of the homomorphisms
@ or @ is not an evaluation at some point of D.

Note that the the homomorphism "generated by evaluation at (a,)" is a character on Ps(#1)
too, but we do not know whether this character is continuous in the topology of uniform con-
vergence on bounded sets.

3.3. THE SYMMETRIC CONVOLUTION

Recall that in [3] the convolution operation ” * ” for elements ¢, 6 in the spectrum, M (X), of
Hp(X), is defined by

(@ *0)(f) = ¢(6(f(- +x))), where f € H,(X). (3.3)

In [6] we have introduced the analogous convolution in our symmetric setting.

It is easy to see that if f is a symmetric function on £, then, in general, f(- + y) is not sym-
metric for a fixed y. However, it is possible to introduce an analogue of the translation operator
which preserves the space of symmetric functions on £,,.

Definition 3.7. [6] Let x,y € £, x = (x1,X2,...,) and y = (y1,¥2, ..., ). We define the
intertwining of x and y, x ey € £, according to

xeoy = (x1,Y1,%2,Y2,---,)-
Let us indicate some elementary properties of the intertwining.

Proposition 3.8. [6] Given x,y € {, the following assertions hold.

(D) Ifx =01(u) and y = 02(v), 01,00 € G, then x ey = o (u @ v) for some o € G.
(2) [|lx o y[|” = [lx[[P + [ly[|”.
(3) Fu(xey) = Fy(x) + Fy(y) for every n > p.

Proposition 3.9. [6] If f(x) € Hps(£p), then f(x @ y) € Hys(£y) for every fixedy € £,.
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Proof. Note that xey = x 0+ 0 ey and that the map x +— x e 0 is linear. Thus the map
x — x ey is analytic and maps bounded sets into bounded sets, and so is its composition with
f-Moreover, f(x ey) is obviously symmetric. Hence it belongs to Hs(£p). O

The mapping f — Ty (f) where T;(f)(x) = f(x ¢ y) will be referred as to the intertwining
operator. Observe that T; o Ty = T3,, = T, o T3 : Indeed, [T o Tj|(f)(z) = Ti[T;(f)](z) =
Ty(f)(zex) = f((zex)ey)) = f(ze(xey)), since f is symmetric.

Proposition 3.10. [6] For every y € £y, the intertwining operator Ty is a continuous endomorphism of
Hps (E P ) :
Proof. Evidently, T; is linear and multiplicative. Let x belong to £, and [|x|| < r. Then |[x e y| <

{r? + |ly||? and

Ty f(x)] < sup f@)] =l AT (3.4)
yllP
llz[|< R/ 7P +]lyllP

So T; is continuous. U

Using the intertwining operator we can introduce a symmetric convolution on Hs(¢,)’. For
any 0 in Hys(£p)’, according to (3.4) the radius function R(0 o Ty) < {/R(6)? + [ly[|P. Then
arguing asin [3, 6.1. Theorem], it turns out that for fixed f € Hys(£) the functiony — 6o Ty(f)
also belongs to Hps(£p).

Definition 3.11. For any ¢ and 0 in H,s(¢;)’, their symmetric convolution is defined according to
(@x0)(f) = ¢y = 0(T;f)).
Corollary 3.12. [6] If ¢, 0 € Mys(£p), then px 6 € Mys(£p).

Proof. The multiplicativity of Ty yields that ¢ 0 is a character. Using inequality (3.4), we obtain
that

R(p*0) < (/R )P+ R(60
Hence ¢ x 6 € Ms(£p). O

Theorem 3.13. [7] a) For every ¢, € Ms(£,) the following holds:

(¢ x6)(Fc) = @(F) + 0(F). (3.5)
b) The semigroup (Mys(£y), %) is commutative, the evaluation at 0, &y, is its identity and the cancela-
tion law holds.

Proof. Observe that for each element Fy in the algebraic basis of polynomials, { F;}, we have

(6 x Fe)(x) = 0(T3(F)) = 6(Fe(x) + F) = Fe(x) + 0(F).
Therefore,
(¢ x0)(Fc) = @(Fc+ 0(F)) = ¢(Fi) + 6 (F).

To check that the convolution is commutative, that is, ¢ x 8 = 6 % ¢, it suffices to prove it for
symmetric polynomials, hence for the basis {F; }. Bearing in mind (3.5) and also by exchanging
parameters (6 x ¢)(F) = 0(F) + ¢(F) = (¢ x0)(F) as we wanted.

It also follows from (3.5) that the cancelation rule is valid for this convolution: If g x6 = ¢ x 6,
then @(Fy) + 0(F) = ¢(F) + 6(F), hence ¢(F) = (F), and thus, ¢ = 9.



34 LV.Chernega

Example 3.14. [7] There exist nontrivial elements in the semigroup (Mys(€,), %) that are invertible:
In [1, Example 3.1] it was constructed a continuous homomorphism ¢ = ¥1 on the uniform
algebra Aus(By,) such that ¢(Fp) = 1 and ¢(F;) = 0for all i > p. In a similar way, given A € C
we can construct a continuous homomorphism ¥, on the uniform algebra Aus(|A[B,) such
that ¥, (F,) = A and ¥, (F;) = 0forall i > p : It suffices to consider for each n € N, the element

1/
v, = (%) ’ (e1 + -+ + ey) for which Fy(v,) = A, and lim, Fj(vn) = 0. Now, the sequence
{00, } has an accumulation point ¥, in the spectrum of Aus([A[By, ). We use the notation 9, for
the restriction of ¥, to the subalgebra Hys(£y) of Aus(|A|Bg,). It turns out that Yo x 1 = o
since for all elements F; in the algebraic basis, ({2 x _x) (F;) = ¢a(F;) + Pa(F;) =0 = do(F).

Therefore, we obtain a complex line of invertible elements {,: A € C}.
As in the non-symmetric case [3] Theorem 5.5, the following holds:
Proposition 3.15. [7] Every ¢ € M,,(£,) lies in a schlicht complex line through &.

Proof. For every z € C, consider the composition operator L, : Hys(£,) — Hps(£p) defined
according to L.(f)((xx)) := f((zxx)), and then, the restriction L} to Mj,(£,) of its transpose
map. Now put ¢* := Li(¢) = ¢ o L,. Observe that ¢*(F,) = @ o L,(F) = ¢((F(z"))) =
Z¢(F). Also, ¢° = &.

Foreach f € Hs(¢p) the self-map of C defined according to z ~~ ¢*(f) is entire by [3] Lemma
5.4.(i). Therefore, the mapping z € C ~» ¢* € My,(£,) is analytic.

Since ¢ # &y, the set £ := {k € N : ¢(F;) # 0} is non-empty. Let m be the first element of ¥,
so that ¢(Fy) # 0. Then if ¢* = ¢, one has 2" ¢(F,) = w™¢(Fy), hence 2" = w™. Taking the
principal branch of the m" root, the map & ~ ¢ V% is one-to-one. H

Recall that a linear operator T : Hys(£,) — Hps(£p) is said to be a convolution operator if
there is § € Mys(f,) such that Tf = 6 x f. Let us denote Heouo(£p) 1= {T € L(Hyps(£p)) :
T is a convolution operator}.

Proposition 3.16. [7] A continuous homomorphism T : Hys(£,) — His(£p) is a convolution operator
if, and only 1f, it commutes with all intertwining operators T,, y € L.

Proof.- Assume there is 6 € Ms(£,) such that Tf = 0 x f. Fixy € £,. Then [T o Ty](f)(x) =
[T(Ty(f)I(x) = [0+ Ty(f)](x) = 6[T(Ty(f)] = 0[Txey (f)]. On the other hand, [Ty o T](f) (x) =
[TH(THIx) = Tf(xey) = (0 f)(xoy) = O[Tz, (f)].

Conversely, set § = & o T. Clearly, 6§ € M,(£,). Let us check that Tf = 6 f : Indeed,

(0% f)(x) = 0[T(f)] = [T(TR(fNI0) = [TAT(f)](0) = Tf(0ex) = Tf(x). [
Consider the mapping A defined by A(8)(f) = 6 « f, that s,
A Mbs(gp) — Hconv(gp)

0 = f0xf=A0)(f)

It is, clearly, bijective. Moreover we obtain a representation of the convolution semigroup

Proposition 3.17. [7] The mapping A is an isomorphism from (M (£y,), %) into (Heono(£p), ©) where
o denotes the usual composition operation.
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Proof - First, notice that using the above proposition,

Alex0)(f)(x) = [(9%0)*fl(x) = (9% O)(T3f) = (6
PIAO)Tf)] = l(A(0) o T)(f)] =

* T2f)
p[(Ty o A(0))(f))-
On the other hand,

[Al@) o AO)](f)(x) = Al@)[AB) (F))(x) = @ x A(6) (f))(x) = @[T:(A(0)(f))].

Thus the statement follows. ]

As a consequence, the homomorphism 6 is invertible in (Ms(£;),*), if, and only if, the
convolution operator A(f) is an algebraic isomorphism. Observe also that for ¢ € M,(£,),
one has

PpoA(f) =ypx0,

because [ip o A(0)](f) = ¢[A(0)(f)] = (0% f) = (¥ % 0)(f)-

Next we address the question of solving the equation ¢ = ¢ x 8 for given @, € My, (£,). We
begin with a general lemma.

Lemma 3.18. [7] Let A, B be Fréchet algebras and T : A — B an onto homomorphism. Then T maps
(closed) maximal ideals onto (closed) maximal ideals.

Proof. Since T is onto, it maps ideals in A onto ideals in B. Let J C A be a maximal ideal,
we prove that T(J) is a maximal ideal in B : If Z is another ideal with T(J) C Z C B, it
turns out that for the ideal T"1(Z), 7 ¢ T~YT(J)) C T~1(Z), hence either 7 = T~1(Z), or
A =T~YZI). Thatis, either T(J) =Z,or B =T.

Let now ¢ € M(A) and J = Ker(¢), a closed maximal ideal. Then T(J) is a maximal
ideal in B, so there is a character ¢ on B such that Ker(¢) = T(J). Then Ker(¢) C Ker(poT),
because if ¢(a) =0, thatis, a € J, wehave T(a) € Ker(¢). By the maximality, either ¢ = o T,
or poT = 0, hence p = 0. In the former case, ¥ is also continuous since being T an open
mapping, if (b,) is a null sequence in B, there is a null sequence (a,) C A such that T(a,) = by;
thus lim,, y(b,,) = lim, ¥ o T(a,) = lim, ¢(a,) = 0. O
Remark 3.19. Let A, B be Fréchet algebras and T : A — B an onto homomorphism. If T(Ker(¢)) is a
proper ideal, then there is a unique { € M(B) such that ¢ = o T.

Corollary 3.20. [7] Let 6 € My (€,). Assume that A(0) is onto. If A(0)(Kere) is a proper ideal,
then the equation ¢ = ¢ x 6 has a unique solution. In case A(8)(Kerp) = Hys(£,), then the equation
@ = ¢ x 0 has no solution.

Proof. The first statement is just an application of the remark, since x 0 = (o A(0) = ¢. For the
second statement, if some solution 1 exists, then again o A(0) = Ppx 0 = @, so P(Hps(£p)) =
(o A(9))((Kerg)) = ¢(Kerg) = 0. Therefore, then also ¢ = 0.

U]

3.4. A WEAK POLYNOMIAL TOPOLOGY ON M,,(£,) [7]

Let us denote by w), the topology in M (¢,) generated by the following neighborhood basis:

Ueky,Jon () = {px @2 9 € Mys(£p) (Bl <& j=1,...,n}
It is easy to check that the convolution operation is continuous for the w, topology, since
thanks to (3.5),
Ue /21, (8) % Uepo ey, jen () C Uy, e, (0% ).
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We say that a function f € Hy,(£p) is finitely generated if there are a finite number of the basis
functions {F} and an entire function g such that f = g(Fy,..., Fj).

Theorem 3.21. A function f € Hys(€,) is wy-continuous if and only if it is finitely generated.

Proof. Clearly, every finitely generated function is wy-continuous. Let us denote by V}, the finite
dimensional subspace in £, spanned by the basis vectors {ey, ..., e,}. First we observe that if
there is a positive integer m such that the restriction f|,, of f to Vy is generated by the restrictions
of Fy,..., Fyto V, for every n > m, then f is finitely generated. Indeed, for givenn > k > m we
can write

f|vk(x) =q1(F(x),...,Fy(x)) and f|vn (x) = qa(F1(x),..., Fu(x))
for some entire functions g1 and g2 on C". Since

{(Fl(x),...,Fm(x)): X € Vk} =C"

(see e. g. [1]) and f|y, is an extension of f|y, we have g1(t1,...,t:) = q2(t1,...,t,). Hence
f(x) = q1(Fi(x),..., Fu(x)) on £, because f(x) coincides with g1 (Fi(x), ..., F(x)) on the dense
subset |J,, Vj;.

Let f be a w,-continuous functionin #s(¢,). Then f isbounded on a neighborhood U, 1, . =
{xel,:|F(x)| <e...,|Fu(x)| < e} . Foragivenn > mlet

flva(x) = q(Fi(x), ..., Fn(x))
be the representation of f|y, (x) for some entire function g on C". Since {(Fy(x),..., Fu(x)): x €
Vo) = C™, q(ty,...,t,) must be bounded on the set {|t1| < ¢,...,|tm| < €}. The Liouville
Theorem implies g(t1,...,tn) = q(t1,...,tm,0...,0), that is, f|y, is generated by Fy,..., Fy.
Since it is true for every #, f is finitely generated. ]

For example f(x) =Y 4 B ”n(!x) is not w,-continuous.

Proposition 3.22. w), is a Hausdorff topology.
Proof. If ¢ # 1, then there is a number k such that

[9(Fe) = p(Fo)| =p > 0.
Let ¢ = p/3. Then for every 61 and 6, in U, x(0),

(¢ % 01)(Fe) = (@ % 02)(F)| = [(@(Fe) — ¢(F)) — (62(F)) — 01(F)| = p/3.
U

Proposition 3.23. On bounded sets of Mys(£,) the topology w, is finer than the weak-star topology
w(Mbs (Ep)/ Hbs (Ep))

Proof. Since (Mys(ly), wp) is a first-countable space, it suffices to verify that for a bounded
sequence (¢@;); which is w), convergent to some ¢, we have lim; ¢;(f) = ¢(f) for each f €
Hps(£p) : Indeed, by the Banach-Steinhaus theorem, it is enough to see that lim; ¢;(P) = §(P)
for each symmetric polynomial P. Being { F;} an algebraic basis for the symmetric polynomials,
this will follow once we check that lim; ¢;(F,) = ¥(F) for each F. To see this, notice that given
¢ > 0, ¢; € Uy for i large enough, that is, there is 0; such that ¢; = ¢ x 6; with |0;(F)| < e
Then, |¢;(F) — ¢ (F)| = |8;(Fx)| < ¢ for i large enough. O
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Proposition 3.24. If (Ms(£,), ) is a group, then wy, coincides with the weakest topology on Mys(£,)
such that for every polynomial P € Hys(£p) the Gelfand extension P is continuous on Mps(£p).

Proof. The sets F_ ' (B(F(1), €)) generate the weakest topology such that all P are continuous.
Let 0 € Mys(£,) be such that |F(0) — F(¢)| < e Set ¢ = 0 x9p~ 1. Then |F(¢)| = |F(0) —
FE(p)| <eand 6 = P« ¢. O

3.5. REPRESENTATIONS OF THE CONVOLUTION SEMIGROUP (M ,(#1),*)[7]

In this subsection we consider the case H;(f1). This algebra admits besides the power series
basis { F,}, another natural basis that is useful for us: It is given by the sequence {G, } defined
by Go =1, and

[o0]

Gu(x) =} Xk Xe,

ey <+ <ky
and we refer to it as the basis of elementary symmetric polynomials.

Lemma 3.25. We have that ||G,|| = 1/n!

Proof. To calculate the norm, it is enough to deal with vectors in the unit ball of /1 whose com-
ponents are non-negative. And we may reduce ourselves to calculate it on L,, the linear span
of {e1,...,en} for m > n. We do the calculation in an inductive way over m.

Since Gp|, ~is homogeneous, its norm is achieved at points of norm 1. If m = n, then G, is
the product x1 - - - x,. By using the Lagrange multipliers rule, we deduce that the maximum is
attained at points with equal coordinates, thatisat 1 (e; + - - - + ;). Thus |G, (L,.7.,1,0,...)| =
1/n" < %

Now for m > n, and x € Ly, we have Gu(x) = Y3 ..ok, <m Xk; * * * X,- Again the Lagrange
multipliers rule leads to either some of the coordinates vanish or they are all equal, hence they
have the same value 1. In the first case, we are led back to some the previous inductive steps,
with Ly with k < m, so the aimed inequality holds. While in the second one, we have

1 1 m 1 1
Gy(—, ", —,0,...) = — < —.
n(m m ) < n > m" — n!
Moreover, |G, || > limy, < ZZ > 1 = 1. This completes the proof. O

Let C{t} be the space of all power series over C. We denote by F and G the following maps
from Ms(#1) into C{¢}

[o0]

Flg)= Y. " p(F,) and Gl(g) = iot”qo«zn).

n=1
Let us recall that every element ¢ € M,(#1) has a radius-function
1
R(g) = limsup [|gn]|» < o,
n—oo

where @, is the restriction of ¢ to the subspace of n-homogeneous polynomials [6].
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Proposition 3.26. The mapping ¢ € My(f1) EA G(@) € H(C) is one-to-one and ranges into the
subspace of entire functions on C of exponential type. The type of G(¢) is less than or equal to R(¢).

Proof. Using Lemma 3.25,

limsup {/n!lga(Go)| < limsup {/n!] gall|Gl

n—00 n—o0
= limsup {/[|gnll = R(¢) < oo,
n—oo
hence G(¢) is entire and of exponential type less than or equal to R(¢). That G is one-to-one
follows from the fact { G, } is a basis. O
Theorem 3.27. The following identities hold:
(1) F(gx0) = F(g) + F(0).
(2) G9*0) =G(9)G(6).
Proof. The first statement is a trivial conclusion of the properties of the convolution. To prove
the second we observe that

(x o) Z Grl(x (y).
Thus "
(6% Ga) (x) = 8(T3(G (z@ ):g@mwﬁu
Therefore, :
(9%0)(G (zq: Gu-i)) = L. 9(GO(Gi).
Hence, being the series absolutely convergent, :
G()G0) = T Fo(G) T 0(G) = f;k T #p(G0(Gn)
n +m=n
= Zt” Y. o(Gi)o Zt” px0)(Gn) = G(p*0).

n=0 kd+m=n
]

Example 3.28. Let i, be as defined in Example 3.14. We know that F(y,) = A. To find G(¢,)
note that

AN . AF
Gr(vn) = <E> < Z > ,hence ¢(Gy) = 11711'1'1 Gr(vy) = 7l

and so
n

G(pa)(t) = lim Z(At) ¥ (Gy) = lim

=0 1/1—)00 —0

According to well-known Newton’s formula we can write for x € /;,

nGu(x) = F(x)Gy_1(x) — B(x)Guea(x) + - - - + (=1)""1F,(x). (3.6)
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Moreover, if ¢ is a complex homomorphism (not necessarily continuous) on the space of sym-
metric polynomials Ps(/1), then

nE(Gn) = ¢(R)E(Gu-1) = (R)E(Gumz) + -+ (1) 2 (F). (37)
Next we point out the limitations of the construction’s technique described in 3.14.

Remark 3.29. Let & be a complex homomorphism on Ps(£1) such that {(Fy) = ¢ # 0 for some m > 2
and (F,) = 0 for n # m. Then & is not continuous.

Proof. Using formula (3.7) we can see that

&(Gim) = (_1)m+15(Fm)CIEZ(k—1>m)

and ¢(Gy) = 0if n # km for some k € N. By induction we have

((_1)m+1c/m>k
k!

g(ka) =

and so

IS <(_1)m+lc/m>
GO =1+~

k=1
Hence G(&)(t) = e = oS Since m > 2, G(&) is not of exponential type. So if &
were continuous, it could be extended to an element in M,(#1), leading to a contradiction

with Proposition 3.26. H

tkm_1+z 1)m+lctm)k:e<(_l)m+1%>

According to the Hadamard Factorization Theorem (see [14, p. 27]) the function of the expo-
nential type G(¢)(t) is of the form

— M ]‘[ ( ) oy (3.8)

where {a;} are the zeros of G(¢)(t).If Y |ak|_l < oo, then this representation can be reduced to

1) = e“lﬁ (1 - a—tk) (3.9)

Recall how 1, was defined in Example 3.14.

Proposition 3.30. If ¢ € (Mys(#1),*) is invertible, then ¢ = 1, for some A. In particular, the
semigroup (Mys(£1),*) is not a group.

Proof. If ¢ is invertible then G(¢)(#) is an invertible entire function of exponential type and so
has no zeros. By Hadamard’s factorization (3.8) we have that G(¢)(t) = e for some complex
number A. Hence ¢ = ¢, by Proposition 3.26.

The evaluation d(1 9. ,... ) does not coincide with any ), since, for instance, Y4 (F2) =0 #1 =

51,0...0,...) (F2)- O
Another consequence of our analysis is the following remark.

Corollary 3.31. Let ® be a homomorphism of Ps(¢1) to itself such that ®(F,) = —Fy for every k. Then
d is discontinuous.
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Proof. If ® is continuous it may be extended to continuous homomorphism ® of H,(£1). Then
forx =(1,0...,0,...), 8¢ * (8 o ®) = &. However, this is impossible since &, is not invertible.

]
We close this section by analyzing further the relationship established by the mapping G.
It is known from Combinatorics (see e.g. [15, p. 3, 4]) that
X X x
Go)(t) =JA+xt) and F(&)(1) =Y —~ (3.10)
k=1 k=1 L= xd

for every x € cop. Formula (3.10) for G(6x) is true for every x € /1 : Indeed, for fixed t, both the
infinite product and G (dy)(¢) are analytic functions on 1.

Taking into account formula (3.10) we can see that the zeros of G(6y)(¢) are a = —1/x for
xr 7 0. Conversely, if f(t) is an entire function of exponential type which is equal to the right
hand side of (3.9) with " |a;| ™! < oo, then for ¢ € M,,(£1) given by ¢ = ) x 6x, where x € £y,
X = —1/a and ¢, is defined in Example 3.14, it turns out that G(¢)(t) = f(t). So we have just
to examine entire functions of exponential type with Hadamard canonical product

_ = _ i t/ ay
f(t) IH (1 ak)e (3.11)
with ¥ |a;|~! = co. Note first that the growth order of f(t) is not greater than 1. According to
Borel’s theorem [14, p. 30] the series

Lo
= o[
converges for every d > 0. Let
1
Ar = limsup L, Uleimsup‘ Y, —
n—o0 |an| rovoo” gy an

and 7y = max(Ay, 1y). Due to Lindelof’s theorem [14, p. 33] the type oy of f and 7 simulta-
neously are equal either to zero, or to infinity, or to positive numbers. Hence f () of the form
(3.11) is a function of exponential type if and only if ¥ |a;| =174 converges for every d > 0 and
7Yy is finite.

Corollary 3.32. If a sequence (x,) & £y for some p > 1, then there is no ¢ € Mys(¢1) such that

[o0]

p(F) =Y xk

n=1
forall k.

Letx = (x1,..., %y, ...) be a sequence of complex numbers such that x € #1 ,; foreveryd > 0,

> X

lim sup n|x,| < oo, lim sup
n—o r—1

< (3.12)

and A € C. Let us denote by §, ) a homomorphism on the algebra of symmetric polynomials
Ps(f1) of the form

[o0]

5(9(,/\) (Fl) = A, 5(3(,/\)(1:]() = Z xﬁ, k> 1.

n=1
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Proposition 3.33. Let ¢ € My(£1). Then the restriction of ¢ to Ps(£1) coincides with @, 5y for some
A € Cand x satisfying (3.15).

Proof. Consider the exponential type function G(¢) given by (3.8) and the corresponding se-
1

quence x = ().

If x € £1, then according to (3.9), ¢ = ¥ x5x. If x & £1, then G(@)(t) = MY, (1 +
txn> e~ and, on the other hand, G(¢)(t) = Y5 o @(Gy)t"

We have
At = —txy, ! _ At = —tx, _ AL( 4.2 —tx —txy
(e ﬂ(l—ktxn)e )t = Ae ﬂ(l—ktxn)e = ( txie 1};(1—”3@1)3
— txde i 1+ txy, e — L.
e TT (1 ) )
= peM ﬁ (1 + txn>e_tx” teM Z xpe I (1 + txn> B
n=1 n#k
and
AT e\
(e ;}_[1 <1+txn>e x ) o = A.
So by the uniqueness of the Taylor coefficients, ¢(G1) = ¢(F1) = A.

Now
/\too tx " /\too tx !
b Je ) = (AN T (1 b )e ™)
(e H( + tx, e t e H + tx, e t
/
(e Zxke IT(1+tx, t

n#£k
= A2eM H (1 + txn> — AteM Z xee M ] (1 + txn> —txn
n=1 k= n#k
— MZX e txkn<1+txn> £
n#+k
At x2e —tx; 14 tx £xy '
( F e T (1))
and
M 1+ tx, e e ! =A2— Y x2
(MIT (1 tm)e) | =47 Lok
Then )
A —F F F
#(Ga) = 22(96) (o( 1))2 2(x)
On the other hand,




42 LV.Chernega

and we have
¢(F2) = Fa(x).
Now using induction we obtain the required result. ]

Question 3.34. Does the map G act onto the space of entire functions of exponential type?
3.6. THE MULTIPLICATIVE CONVOLUTION [8]

Definition 3.35. Let x,y € £, x = (x1,%2,...), ¥ = (y1,Y2,...). We define the multiplicative
intertwining of x and y, x oy, as the resulting sequence of ordering the set {x;y; : i,j € N} with
one single index in some fixed order.

Note that for further consideration the order of numbering does not matter.

Proposition 3.36. For arbitrary x,y € £, we have

(1) xoy & ly and |xoy| =[xyl

(2) F(xoy) = F(x)F(y) Yk = [p].

(3) If P is an n-homogeneous symmetric polynomial on £, and y is fixed, then the function x

P(x oy) is n-homogeneous.

Proof. Tt is clear that [[x o y[|P = L) [xiy[P = X [xi|” X lyjlP = [lx|[P[ly]P. Also Fe(xoy) =
Zi,j(xiyj)k =y, Y y;‘ = Fi(x)F(y). Statement (3) follows from the equality A(xoy) = (Ax) o
y. H

Given y € /,, the mapping x € [, X (xoy) € {p is linear and continuous because of
Proposition 3.36. Therefore if f € Hs(€,), then f o m, € H,(¢,) because f o 7, is analytic
and bounded on bounded sets and clearly f(0(x)oy) = f(xoy) for every permutation o € G.
Thus if we denote M, (f) = f o 7y, My is a composition operator on Hys(£,), that we will call
the multiplicative convolution operator. Notice as well that My = M, for every permutation
o € G and that M (F) = F(y)F Vk > [p].

Proposition 3.37. For every y € £, the multiplicative convolution operator My is a continuous homo-
morphism on Hys(Lp).

Note that in particular, if f, is an n-homogeneous continuous polynomial, then || M, (f,)|| <
[ fullllyll". And also that for A € C, My, (fu) = A"M,(f,), because 7y, (x) = Am(x). Analo-
gously, My y=(fn) = fu o (7y + 72), because 7y, = 7y + 71;. Therefore the mapping y € £, —
My (fy) is an n-homogeneous continuous polynomial.

Recall that the radius function R(¢) of a complex homomorphism ¢ € My,(£,) is the infimum

of all r such that ¢ is continuous with respect to the norm of uniform convergence on the ball
rBy,, thatis |p(f)] < C;|/f|lr. It is known that

R(¢) = limsup [[¢u]'/",
n—oo
where ¢, is the restriction of ¢ to Ps("£,,) and ||¢;|| is its corresponding norm (see [6]).
Proposition 3.38. For every 6 € Hys(£,)" and every y € £, the radius-function of the continuous
homomorphism 6 o M,, satisfies
R(6 o My) < R(9)[y
and for fixed f € Hys(£p) the function y — 6 o My (f) also belongs to Hyps(Ly).
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Proof. For agiveny € £,,let (8 o My), (respectively, 6,,) be the restriction of 6 o My (respectively,
6) to the subspace of n-homogeneous symmetric polynomials. Then we have
M,( f
0ol = sup [ou (S 1l < leallol
Inll<1

So
R(8 o My) < limjup(IIGnH Iyl = R(0)|lyll.
n o0

Since the terms in the Taylor series of the function y — 6 o M,(f) are y — 6 o My(f,), where
(fn) are the terms in the Taylor series of f, the formula above proves the second statement. [

Using the multiplicative convolution operator we can introduce a multiplicative convolution

on Hbs(ﬁp)/.

Definition 3.39. Let f € Hjs(£p) and 6 € Hys(£y) . The multiplicative convolution 9 f is defined
as
(80f)(x) = 8[Myx(f)] for every x € £, .

We have by Proposition 3.38, that 00 f € Hs(£;).
Definition 3.40. For arbitrary ¢,0 € H;5(£y) we define their multiplicative convolution {0

according to
(¢00)(f) = @(60f) for every f &€ Hys(£p).

For the evaluation homomorphism at y, é,, observe that

(64 0f)(x) = 8y(Mx(f)) = (f o ) (y) = f(70x(y)) = fxoy) = frmy(x)) = My(f)(x)-

Hence, 5,08y = Sxoy-
Proposition 3.41. If ¢, 0 € M(£,), then 908 € Mys(Ly).

Proof. From the multiplicativity of M, it follows that {0 is a character. Using arguments as in
Proposition 3.38, we have that
R(¢00) < R(@)R(6).

Hence 08 € M,(£p). O
Theorem 3.42.

LIf 9,6 € Myu(£y), then (900)(F.) = p(F)8(F.) vk = [p]. (313)
2. The semigroup (Mys(£,), ) is commutative and the evaluation at xo = (1,0,0,...), Oy, is its
identity.
Proof. Let us take firstly x,y € £, and 6,9, € ./\/lbs(ﬁp) the corresponding point evaluation
homomorphisms. Then (6:03)(F) = F(xoy) = L xky* = F(x) F(y).

Now let ¢, 0 € Mys(€,). Then
(60F)(x) = 0(Mx(F)) = 0(Fi(x) Fr) = Fi(x)0(F).

So,

(900) (F) = @(FO(F)) = ¢(Fe)6(Fy)-
Exchanging parameters in (3.13) we get that

(009) (Fe) = 0(F)¢(Fo) = (900)(Fr),
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whence it follows that the multiplicative convolution is commutative for F;. Since every sym-
metric polynomial is an algebraic combination of polynomials F; and each function of Hs(¢;)
is uniformly approximated by symmetric polynomials, then the convolution operation is com-
mutative. Analogously, ¢ is associative since

(p0(900)) (Fr) = p(F)p(F)0(Fe) = (09)00)) (Fe)-
Also from (3.13) it follows that the cancelation rule holds and éy,, where xp = (1,0,0,...), is
the identity. O

In [7] it was constructed a family {¢, : A € C} of elements of the set My(£,) such that
Pa(Fp) = Aand ¢, (F) = 0 for k > p. Let us recall the construction: Consider for each n € N,

1/
the element v, = <A> ’ (e1 + -+ -+ ey) for which F,(v,) = A, and lim,, F;(v,) = 0 for j >

n
p. Now, the sequence {Jy, } has an accumulation point ¢ in the spectrum for the pointwise
convergence topology for which ¥, (F;) = 0 for k > p that prevents ¢, from being invertible
because of (3.13).

Remark 3.43. The semigroup (Ms(£,), ) is not a group.
Recall that for any @,8 € M(¢,) and f € Hps(€,), the symmetric convolution ¢ x 6 was

defined in [6] as follows:
(¢ 0)(f) = ¢(Ty(f)),
where T;(f)(x) = f(x e y).
Proposition 3.44. For arbitrary 8, ¢, p € Mys(£,) the following equality holds:

00(9x ) = (00¢) x (609).
Proof. Indeed, using Theorem 3.42 and [7, Thm 1.5], we obtain that
((009) x (009))(Fe) = (00¢)(Fr) + (009)(Fr) = 0(F)(Fi) + 6(Fe)p(Fe)
= 0(F)(@(F) + ¢(F)) = 0(F) (@ * ) (F)
= 00(¢x ) (F).
]
Corollary 3.45. The set (My(£p), O, %) is a commutative semi-ring with identity.

A linear operator T : Hys(£y) — Hps(£p) is called a multiplicative convolution operator if there
exists 0 € My(£p) such that Tf = 00f.

Proposition 3.46. A continuous homomorphism T : Hys(£y) — Hps(€p) is a multiplicative convolu-
tion operator 1f and only 1f it commutes with all multiplicative operators My, y € £,,.

Proof. Suppose that there exists § € My,(€,) such that Tf = 80 f. Fixy € £,,. Then

[T o My](f)(x) = [T(My(f))](x) = [6OMy(f)](x) = O[M(My(f)] = 0[Mxoy(f)]-

On the other hand,
[My o T](f)(x) = [My(T)](x) = Tf(xoy) = (00f)(xoy) =0
Conversely, for xo = (1,0,0,...) we put = &y, o T. Clearly, 8 € M, (¢

%(I)Qoflndeedf (00£)(x) = 81M (/)] = [T(Mx(H)](x0) = Ma(T(FI(

Moy (f)]-
). Let us check that
x0) =Tf(xg0x) =
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Theorem 3.47. A homomorphism T : Hys(£y) — Hps(Lp) such that T(F) = axF, k > [p], is
continuous if and only if there exists ¢ € Mys(£y) such that ¢(F) = ar, k > [p].

Proof. Let ¢ € Mys(€,) with ¢(F) = a. Then

(¢OF) (x) = ¢(Mx(F)) = ¢(FcFi(x)) = arFi(x).

Thusif Tf = ¢Of, T defines a continuous homomorphism and T(F) = ayFy.

Conversely, if such homomorphism T is continuous, then clearly T commutes with all M,.
By Proposition 3.46 it has the form T(f) = ¢Of for some ¢ € Mys(fy). Thus, T(F) =
¢(F) Fr(x) = agFy, hence o(F) = a. m

Proposition 3.48. The identity is the only operator on Hys(£p) that is both a convolution and a multi-
plicative convolution operator.

Proof. Let T : Hys(€y) — Hps(€p) be such an operator. Then there is § € My,(£,) such that
Tf = 6 f and T commutes with all M,,. In particular we have for all polynomials F,, k > [p],
that

My(TFc) = My(0 * F) = My(0(F) + F) = 0(F) + My(F) = 0(F) + F(y)Fe and

T(My(F)) = T(F(y)Fe) = Fe(y)6 * Fe = Fe(y) (0(F) + F) coincide.

Hence 0(F) = F(y)0(Fy), that leads to 0(F) = 0, that in turn shows that 6 = &, or in other
words, T = Id. O

3.7. THE CASE OF /7 [8]

In this section we consider the algebra H,(/1). In addition to the basis {F, }, this algebra has
a different natural basis that is given by the sequence {G,} :

[o0]

Gn(x) —_= Z _xkl..._xkn

k<o <ky

and G() = 1.
According to [7] Lemma 3.1, ||G4| = J;, so it follows that for every t € C, the function
Yo ot"Gu € Hyps(f1) and that such series converges uniformly on bounded subsets of /1. Thus

lf q) S Mbs(gl)/
G(@)(H) = (L #"Gu) = X #'p(Ga)
n=0 n=0
is well defined and as it was shown in [7, Proposition 3.2], the mapping

¢ € Mys(t1) 2 G(g) € H(CT)

is one-to-one and ranges into the subspace of entire functions of exponential (finite) type.
Whether G is an onto mapping was an open question there that we answer negatively here,
see Corollary 3.52, using the multiplicative convolution we are dealing with.

Observe that for every a € C,

(5(a,0,0,...)<> i)t”G,J(x) = Mx(i t"Gy)(a,0,0,...) = (i t'Gy)(x©(a,0,0,...))

n=0 n=0
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=) t"Gulax) = )_ t"a"Gu(x)
n=0 n=0
Therefore,

[e0] [e0]

G(908(a00,.)) (1) = @(}_ 1"a"Gu) = ), t"a"p(Gy).

n=0 n=0
According to [7, Theorem 1.6 (a)], 6(4,0,0,...) * 8(5,0,0,...) = S(a,0,0,..), consequently using Proposi-
tion 3.44 and [7, Theorem 3.3 (2)],

G900, (1) = G ((9001400,.)) * (903(100,.)) ) (1) = G(P08(a00,.) ) (NG (@0S00,..) (1) =

Z t"a"o(Gy) - Z 0" g
Therefore,

(@Oéxlm %n,m I]:E:tnxk¢ Gn

Further since the sequence (5(x1,xz,...,xm,0,...)> is pointwise convergent to 8y, v, . x,..) i Mps(£1)
m

we have, bearing in mind the commutativity of {, that the sequence (99<>5(x1,xz,...,xm,0,...)) is
m

pointwise convergent to 00y, x, .. x,...)- Thus

X X

GpOs)(t) =T X t"xf9(Gu) forx = (x1,x2,...,Xm...) € 1. (3.14)
k=1n=0

For the mentioned above family {¢, : A € C}, it was shown in [7] that G(¢,)(t) = eM.
Further, it is easy to see that
(1) Ya0@(F) = Ap(Fr).
(2 Y109(F) =0, k>1.
(3) G(pa0p) = eo i,

The following theorem might be of interest in Function Theory.

Theorem 3.49. Let g(t) and h(t) be entire functions of exponential type of one complex variable such
that (0) = h(0) = 1. Let {a} be zeros of g(t) with ), 4 | < oo and let {by, } be zeros of h(t) with

Y1 |bl—n| < co. Then there exists a function of exponential type u(t) with zeros {anbm } nm, which can
be represented as

ox ox 1 n ox ox 1 n
u(t) = —— ) h(t) = — ) &n(t)
T (-7) Iy (-5)
Proof. By [7], g(t) = G(6x)(t) and h(t) = G(&y)(t), where x,y € (1, x, = —%r Yn = _bl_n‘ S0
u(t) = G(6x0d,)(t) and using (3.14) we obtain the statement of the theorem. O

Letx = (x1,..., %y, ...) be a sequence of complex numbers such that x € £1,,; foreveryd > 0,

lim sup n|x,| < oo,
n—oo r—o0

(3.15)

Vﬂ
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(think for instance of x, = #) and A € C. Let us denote by 6, 1) a homomorphism on the
algebra of symmetric polynomials Ps(#1) of the form

[o0]

5(x,/\) (Fl) =A, 5(9(,/\)(1:]() = Z xﬁ, k> 1.
n=1
Recall that according to [14, p. 17], limsup,,_, . #|x,| coincides with the so-called upper density
of the sequence (%) that is defined by lim sup, _, @, where n(r) denotes the counting number
of (xl—n), that is, the number of terms of the sequence with absolute value not greater than r.

Proposition 3.50. [7, Proposition 3.9] Let ¢ € M (¢1). Then the restriction of ¢ to Ps(¢1) coincides
with 6, xy for some A € C and x satisfying (3.15).

Actually, thanks to [1, Theorem 1.3] such sequence x is unique up to permutation.

Theorem 3.51. There is no continuous character of the form 8, in the space Mys(£1), where
. Co Cy
U= {Cl,i,...,;,... },
and |cx| = 1 for each k.

Proof. Assume otherwise, i.e., §, ,) is the restriction of some ¢ € My, (f1). Thenby (3.13),

2
(90@)(Fe) = (Fy)* = <Z vﬁ) = <Z vﬁ) <Z v%) = Y (vsow)".
n=1 n=1 m=1 nm=1

Therefore the sequence (vyUm)nm = VOV = s, is, up to permutation, the one appearing in
Proposition 3.50, so it must satisfy condition (3.15), that is, the sequence of the inverses has
finite upper density.

Denote by d(m) the number of divisors of a positive integer m. Then in the sequence |s| of
absolute values each number with absolute value 1/m can be found d(m) times. So |s| can be
rearranged, if necessary, in the form

1111111 1 1
/2/2/3/3/4/4/4/“‘1ml ‘ml“‘
N—_——
d(m)

m
In particular, the index of the last entry of the element with absolute value L is Y d(n). Hence
n=1
for the sequence of the inverses and their counting number n(m), we have n(m) = Y_* ; d(n).
From Number Theory [2, Theorem 3.3] it is known that

i din) =mlnm+2(y—1)m+ O(vm),
n=1

where 7 is the Euler constant. So we are led to a contradiction because

. n(m . mlnm .
lim sup Q > lim sup = limsupInm = oo.
m—oo M H—00 m m—00
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Corollary 3.52. There is a function of exponential type g(t) for which there is no character ¢ € My (l1)
such that G(¢)(t) = g(#).

Proof. 1t is enough to take a function of exponential (finite) type whose zeros are the elements
of the sequence

{i} ={-1,2,...(=1)",...}.

On
Such is, for example, the function

O]

Every ¢ € Mys(fq) is determined by the sequence (¢(Fy)), that verifies the inequality
limsup, |@(Fx)|™ < R(¢) because ||Fy|| < 1. As a byproduct of Theorem 3.51, we notice
that the condition lim sup,, |ax|!/™ < +o0, does not guarantee that there is ¢ € M,(#;) such
that ¢(Fy) = 4, @ Indeed, leta,, = Y, nim for m > 1 and arbitrary a1. Then the sequence (a,,)

is bounded, so lim sup,, |a,|!/™ < 1, and if there existed ¢ € My,(#1) such that (Fy) = ap, it

would mean that for the sequence x := (1), ¢(Fy) = ¥, -1, s0 Sixar) = Pl; )

Question 3.53. Can each element of M (/1) be represented as an entire function of exponential
type with zeros {a, }% ; such that either {a,} = @ or I3° 4 {11 < c0?

fan]
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CONVERGENCE INVESTIGATION OF ITERATIVE
AGGREGATION METHODS FOR LINEAR EQUATIONS
IN A BANACH SPACE

M.1. Kopach,A.F. Obshta, B.A. Shuvar

Abstract. The sufficient conditions of convergence for a class of multi-parameter iterative
aggregation methods are established. These conditions do not contain the requirements of
positivity for the operators and aggregating functionals. Moreover, it is not necessary that
the corresponding linear continuous operators are compressing.

Keywords: decomposition, parallelization computation methods, iterative aggregation.

1 Introduction

Problems of the operator equations decomposition are still actual. It is caused by the necessity
of construction parallelization computation methods. Multi-parameter iterative aggregation is
an effective method for decomposition of the high dimension problems (see [1]).

Let E be a Banach space and A : E i >E be a linear continuous operator. Consider the
equation

X = Ax + b, bf E (1.2)

For such equations often it is assumed that: 1) the normal cone K C E of positive elements
is given; 2) semiordering in E is introduced by such elements; 3) compression operator A and
element b are positive (see, for example, [2]-[4]). These and other requirements are caused by
the specificity of the corresponding problems (see, for example, [5]-[10]). More detailed results
for one-parametric method are given in [2, p. 155-158] and can be described by the formula

S G ap ey =
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Here (¢, x) denotes the value of a linear functional ¢ € K* on the elements x € E, where K* is
a cone of positive elements in a dual Banach space E*. The algorithm (1.2) is investigated in [2,
p. 155-158] with the following assumptions: (i) A is a focusing operator [2, p. 77]; (ii) spectral
radius p(A) of the operator A is less than one; (iii) the functional ¢ is admissible. A functional ¢
is called an admissible if there exists a functional § € K* such that ¢ = A*gand (g,x) > (¢, x)
for x € K, x # ©, where A* is conjugate to A operator and © is zero element in E.

In particular, if (1.1) is a system of linear algebraic equations with a matrix A = {a;;}, then
the focusing condition is valid when all a;; are strictly positive numbers. For the linear integral
operator of the following form

Ax = /ab G(t,s)x(s)ds

the focusing condition is valid if the continuous function G(#, s) satisfies the condition G(¢,s) >
¢ >0fort,s € [a,bl.

In [2, p. 158] it is noted that the theory of methods for iterative aggregation is not well
developed and the conditions of their convergence are unknown. In particular, as it is indicated
by numerous examples (see [2, p. 158]), one parametric method (1.2) often converges when the
above conditions are not fulfilled.

In this work we investigate the multi-parameter algorithms of iterative aggregation using
the methodology described in [11]-[15]. The established sufficient conditions of convergence
do not contain the requirement of type p(A) < 1 for a spectral radius p(A) of an operator A
and condition of signs constancy for the operator A and of the aggregating functionals.

2. CONSTRUCTION OF THE AGGREGATIVE-ITERATIVE ALGORITHM

We consider the equation (1.1) in a Banach space E. We do not need semiordering in E. Let
the equation (1.1) is presented in the form

N
x=)Y Ax+Ax+b, (2.1)
j—1

where Ag: E — E, Aj: E — E (j=1,...,N), b € E. Set the linear continuous functionals q)(i)
(i=0,1,...,N). Let us join to the equation (2.1) the auxiliary system of equations

N . .
yi=Y Ay + (9%, Bix) — (¢l0,b)  (i=0,1,...,N). (22)
j=1
Our basic assumptions are the following.
A) The equalities
(¢, Ax) = A(9W,x)  (j=1,...,N;i=0,1,...,N) (2.3)
hold.

B) There exists the operators B; : E — E (i =0,1,..., N) such that
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Let us construct the iterative process by the formulas

N N
O = ) A Ao+ a6 - ) e @)
= =1
(n41) N (n+1) () ma(n)y L N (m) (1) (nt1)
Yi - 2/\1']%’ + AioYo + (¢, Bix )+Z“ij (y]' —Y; )
j=1 =1
+a " =y~ (90 (1=0,1,...,N), (2.6)

2
]
(¢ ai(x) + Aj(x) =y (x€E ij=01,..,N) 27

where A;; are real numbers and a;(x), a;;(x) are continuous functions for x € E.

where the elements a;”/ = aj(x(”)) € E and real numbers oci(;q) = ocij(x(”)) satisfy the condition:

3. MAIN LEMMA

Let E’ be an Euclid space of dimension N + 1. Consider the set of elements x € E and vectors
v = {yo,¥1,...,yn}' € E/, such that the equalities

(oW, x) +1; =0 (i=0,1,...,N) (3.1)
hold. Denote this set by ep. It is clear that g is a subspace of the space E = E x E equipped by

the norm
[ y) Il =/ l1x)2 + [y]2,

where ||x|| is the norm of an element x € E and |y| is the Euclidean norm of a vector y € E'.

Lemma 3.1. Lef the conditions A) and B) be satisfied. Let the matrix I — A be nondegenerate, where I
is the unit matrix in E' and
A={r} (,j=0,1,...,N). (3.2)

Then solution {x*,y*} € E of the system (2.1), (2.2) belongs to g, i.e. {x*,y*} € ¢
Proof. From the formulas (2.1)-(2.4) for x = x*, y; = y; we have

N

(@D, x%) +yt =Y (0D, Apx™) + (9, Aox*) + (91, b)
j=1

N B .
+ Y Ayt + (9, Bix*) — (¢, b)
pst

I
™M=

I
—_

Aij [(gv(j),X*) +yﬂ + [(Go(i)/AOX* + Bix*) + /\ioyé}
j

I
™=

I
—_

Aij [(90“)/95‘) + yﬂ + Ao [(qv(o),x*) + y(ﬂ (i=0,1,...,N).
j
Note, that the matrix I — A is nondegenerate, so the lemma is proved.
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Lemma 3.2. Let the conditions A), B) and (2.7) be satisfied. If the matrix I — A is nondegenerate and
{x(0, O} € ¢, then {x(),y)} € g forn =0,1,...

Proof. From the equalities (2.5)—(2.7) we have

. n N . ; N ] n n n
(97010 4" 39 A )9, A0 )+ (017, 4= )
j=1 j=1

; n n n i ¥ n ‘ n
o)y g )+ (0 0) + 1 Ay g™+ (9, Box ™)
j=1

N . N .
+ Z Dcl(]”)(y](n) - y](nJrl)) + Dcl(g)(y(()n) - y](nJrl)) _ (go(z)’b) _ Z /\ij(q)(])/x(n))
j=1 j=1 (3.3)
] i n n n N i n n n
+(p, Aox™ + Bix™) + | (97, al") + a| (" +]Z% (@,a) +al |y

4 [/\io — (Va1 +“1~(g)} g [/\ij _ (q)(i)’a](n)) B “@)} gD
N
Z P[00 2+ | + 20 (9@ 1y (=01, N).

Since {x(0), 4y} € ¢, equalities (3.3) are the reason for using of the induction principle. The
proof is complete.
From these two lemmas we obtain the following assertion.

Lemma 3 3. Let the conditions A), B) and (2.7) be satisfied. If there exists the matrix (I — A)7,
{x(0,yO} € ¢, and {x*,y*} is the solution of the system (2.1), (2.2) in E, then

(W, xW — x4y _yr =0 (i=01,...,N;n=0,1,...). (3.4)

1

Proof. It is enough to note that (3.4) is a consequence of the equalities (3.1) for {x(o),y(o)} and

{x*,y*}.

4. SUFFICIENT CONDITIONS FOR THE CONVERGENCE OF THE ALGORITHM (2.5), (2.6)

Denote 2™ = {a{”,a\",...,al"}, [9,b] = {(¢,b),(pD,b),...,(eN),b)}7, [, Bx] =
{(¢"9, Box), (¢, B1x), ..., (™), Byx)}T. Let us rewrite the formulas (2.2), (2.5), (2.6) in the
form

y=Ay+ [, Bx] =g, b], (4.1)
x(H D) — Ax(m) a(”)(y(”) — y(”+1)) +b, (4.2)
yU Y = Ay 4 g, Bx ]+ D (y ) — D) — g, 1], (43)

respectively, where the matrix A is defined by (3.2).
From the formulas (1.1), (4.1) and (4.2), (4.3) we obtain

D —xt = A = xt) a1 = y) = el () - ), (44)
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gyt = (A= a1 ) g, BGY ). (45)
Hence
YDy = (1= A+ a) a0 (™ — )+ (1= A+ a) g, Bx™ —x*)].  (46)
This equality together with (4.4) imply the equality
_x(n+l) J— _x* :A(x(n) J— _x*) _|_ a(n) (y(n) J— y*) J— a(n)(l J— A _|_ Dé(n))_llx(n) (y(n) J— y*)_ (4 7)
—a" (1 — A+ a1, B(x" — x*)]. '

Therefore, using (4.7) and (3.4), we obtain

D) o = A — x*) — W (1= A+ a1 = A) [, x — x*] + [, B(x™) — x*))).
4.8)
From (4.6), (4.8) it follows the next assertion.

Theorem 4.1. Let the conditions of Lemma 3.3 be satisfied. Let the operator, generated by the right part
of the equalities (4.6), (4.7) with respect to the pair {x — x*,y — y*} with (x,y) € €o, be compression.

This means that the operator H = ZE Z;i > is compression with respect to the pair {w, z}, where

weE zeFE, {wz} €e,

hw = Aw + a(x)(I — A+ a(x)) e, Bw],
hpz =a(x)(I— A+a(x))" (I —A)z,
hyyw=(I—A+ oc(x))_l[q), Bw],

hpz = (I— A +a(x)) la(x)z

Then a sequence {x"™)}, obtained by the algorithm (4.2), (4.3) converges to the solution x* € E of the
equation (1.1) not slower than a geometric progression with common ratio q < 1, where q is a norm of

the operator H in the space E.
From the Theorem 4.1 we can get next proposition.
Theorem 4.2. Let the conditions of Lemma 3.3 be satisfied. Define the operator Hy by the formula
How = Aw — a(x)(I — A+ a(x)) (I = A) [, w] + [, Bw]). (4.9)

If for (x,y) € ¢q the operator Hy is compression with a compression constant qo < 1, then a sequence

{x(”)}, obtained by (4.2), (4.3), converges to the solution x* of the equation (1.1) not slower than a
geometric progression with common ratio go.

Proof. Rewrite the equalities (3.4) in the form
[p, 2" =]+ (" —y")T =0, (4.10)

where © is zero column vector. From (4.9), (4.10) we obtain that the theorem is proved.
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5. MULTI-PARAMETER ITERATIVE AGGREGATION

Define elements a;(x) by the formula

A.
aj(x) = i (j=0,1,...,N,x €E). (5.1)

In this case the algorithm (2.5), (2.6) can be defined by the interpolation formula

N (o) y(nt+1) (0) y(n41)
X =y (@7, ") w2

= (o, xty (), 5y

This algorithm is an analogue of the method (19.12), (19.13) from [2, p.156]. From the nonde-
generacy of the matrices I — A, I — A + «(x) for {x,y} € ¢ (x € E, y € E) it follows that we
can choose the aggregation functionals ¢!, matrices A = {Aij} and a(x) = {a;j(x)}, which are
used in described above methodology.

If w(x) is a zero matrix, then the algorithm (2.5), (2.6) does not converted to one of the
projection-iterative methods, that are investigated in [16, 17].

It is also possible to construct other multi-parameter algorithms of iterative aggregation. For
example,

(5.2)

o) x<n+1>)

N
D = Aox(™ 4 Z LA, x4 b, (5.3)
j=1 q) , X )
Let us consider the case, when we use the formulas
N 1
x (D) Z Aj 2 4 )y a](”)(y](-n) — y](-n+ )) + Aox™ + b, (5.4)
=1
V(HH) = AV(HH) + ¢, Bx(n)] + “(n)(y(n) - V(HH)) — o, on(n)] — (¢, 0] (5.5)

instead of the formulas (2.5), (2.6) respectively.

Everywhere in the formulas (5.3)-(5.5) all indices i, j take values from 1 to N, i.e. i # 0 and
j#0.

For the algorithm (5.4), (5.5) we remain the structure of the matrix H and of the set ¢g. In this
case we have

hw=Aw+a(x)(I— A+ oc(x))_l[q), (B— Ag)w),
hpz =a(x)(I— A+a(x))" (I —A)z,
hyyw=(I—-—A+ oc(x))_l[q), (B— Ag)w),

hoz = (I - A+a(x))a(x)z

In these circumstances, the Theorem 4.2 is still valid for the algorithm (5.4), (5.5).
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Abstract. The paper contains a proof of Hilbert Nullstellensatz for the polynomials on
infinite-dimensional complex spaces and for a symmetric and a block-symmetric polynomi-
als.
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1 Introduction

The Hilbert Nullstellensatz is a classical princip in Algebraic Geometry and actually its start-
ing point. It provides a bijective correspondence between affine varieties, which are geometric
objects and radical ideals in a polynomials ring, wich are algebraic objects. For the proof and
applications of the Hilbert Nullstellensatz we refer the reader to [6].

The question whether a bounded polynomial functionalon a complex Banach space X is de-
termined by its kernel the set of zeros under te assumption that all the factors of its decom-
position into irreducible factors are simple was posed by Mazur and Orlich (see also Problem
27 in [10]). A positive answer to this question it follows from Theorem 2 of the present paper.
Moreover, this result remains valid even when the ring of bounded polynomial functionals is
replaced by any ring of polynomials for which there exists a decomposition into ireducible fac-
tors satisfying the following condition along with each polynomial P (x) that it contains the ring
also contains the polynomial PA0(x) = P(x0+ AX), where x 6 X and A6 C.

Let X and Y be vector spaces over the field C of complex numbers. A mapping Pk(x1, ..., xk)
from the Cartesian product Xkinto Y is k — linear if it is linear in each component. The re-
striction Pkof the k-linear operator Pkto the diagonal A= {(X1,..., xk) 6 Xk:x1 = ... = xk},
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which can be naturally identified with X, is a homogeneous polynomial of degree k (briefly, a k-
monomial). A finite sum of k-monomials, 0 < k < n, P(x) = Py(x) + P1(x)+... 4+ Pu(x), P, #0
is a polynomial of degree 1. For general properties of polynomials on abstract linear spaces we
refer the reader to [4].

This paper is devoted to generalizations of the Hilbert Nullstellensatz of infinite dimensional
spaces. In Section 2 we consider the case of abstract infinite dimension complex linear spaces.
Section 3 is devoted to continuous polynomials on complex Banach spaces. In Section 4 we
examin symmetric polynomials on £, and Section 5 contains some new results about Nullstel-
lensatz for block-symmetric polynomials.

2. THE NULLSTELLENSATZ ON INFINITE-DIMENSIONAL COMPLEX SPACES

All results of this section are proved in [15].
Let us denote by X a complex vector space, by P(X) the algebra of all complex-valued poly-
nomials on X. Let Py(X) be a subalgebra of P(X) satisfying the following conditions:

(1) If P(x) € Po(X), then Py ,z(x) = P(Ax + x0) € Po(X) forany xp € Xand A € C.
(2) If P € Py(X), P = PPy Py # 0, P # 0, then Py € Py(X) and P € Py(X).

That is, the algebra Py(X) is factorial and closed under translation. We shall agree to call
such algebras of polynomials FT-algebra.

It is obvious that P(X) is an FT-algebra. A typical example of an FT-algebra is algebra of
bounded polynomials (on bounded subset) on a locally convex space X. We shall denote this
algebra by P, (X). Anothe example of an FT-algebra is provided by the polynomials formed by
finite sums of finite products of continuous linear functionals on X (polynomials of finite type).
If Y is subspace of X, we take Py(Y') to mean the restrictions of the polynomials of Py(X) to Y.
It easy to see that P, (Y) coincides with the algebra of bounded polynomials on Y.

Let Py(x) € Po(X) be a family of polynomials, where -y belongs to an index set I'. We re-

call that an ideal (P,) in Py(X) isaset ] = {P € Py(X):P=Y Q,(x)Py(x),Qy € PO(X)} ,
yerl
where the sum Y, Q,(x)P,(x) contains only a finite number of terms that are not identifically
yel

zero. A linearly independent subset { Py, } of the set { Py } such that (Py) = (P, ) is a linear basis
of the ideal J. For an ideal | € Py(X), V(]) denotes the zero of |, that is, the common set of zeros
of all polynomials in J. Let G be a subset of X. Then I(G) denotes the hull of G, that is, a set of
all polynomials in Py(X) which vanish on G. The set rad] is called the radical of J if P¥ € J for
some positive integer k implies P € rad]. P is called a radical polynomial if it can be represented
by a product of mutually different irreducible polynomials. In the case (P) = rad(P).

It is easy to see that I(G) is an ideal in Py(X). The main problem that we shall solve consists
of establising conditions under wich the equality

Iv()) =]

holds for the ideal ] € Py(X) that is, an ideal in Py(X) is uniquely determined by its set of
Zeros.

In the finite-dimensional case the answer to this question is provided by the Hilbert Null-
stellensatz, which asserts that a necessary and sufficient condition for this to happen is that the
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ideal | be equal to its radical (which we shall define below). We remark that for the infinite-
dimensional case this condition is not sufficient. (A counterexample will be given).

Lemma 2.1. Let Py, ..., P, be polynomials on X and deg Py > deg P, > ... > deg P, > 0. Then there
exists an element h € X such that for any x € X the degree of the scalar-valued polynomial Py(x + th)
in t is deg Py, and the polynomials P, . .., P, depend on h, that is, for each P;,i =2, ..., n, there exists
x; such that the scalar-valued polynomial P;(x; + th) in t is of positive degree.

Proof. For n = 1 the assertion of the lemma is obvious. Assume it is true for n — 1. Let 11 be the
required element for Py, ..., P,_1. Assume that P, is independent of iy, that is, P,(x + thy) =
Py (x) Vx € X. Let hp be an elementof X such that P, depends on ;. We make the definition
h(A) := h1 4+ Ahp, A € C. Consider the family of scalar-valued polynomials P;(x + th(A)) in ¢
with parameters A, x. For any x there is only a finite set of A, at which the polynomial P;(x +
th(A)) is of degree less than deg Py in .

m
Indeed, let deg Py = m, and let P; = }_ f; be an expansion in monomials. Then Py (x + th(A))
i—0

can be given in the following form:

Pi(x+th(A)) = iﬁ(x—kth(/\)) = itjﬁ-(x,...,x,h(/\),...,h(/\))

= " fu(h(1) + 3 Y tgi(x +h(1)),

k<m j<k
where f; are i— linear forms corresponding to the monomials f;;

]
—TN—

qg; = Zﬁ(x,...,x,h(/\),...,h(/\)).

If deg Py(x + th(A)) < m for some value A’ of the parameter A, then f,,(h(A)) = fiu(h1 +
AMhy) = 0. But, since fi,,(h1 + Ahy) is polynomial in the variable A (for fixed 1 and hy), it can
have only a finite number of zeros without being identically zero. Assume that f,,(h1 + Alp) =
0. Then this relation also holds for A = 0. Hence deg Py (x + th(0)) = degPi(x + thy) < m,
which contradicts the choice of K.

Similarly, for each i = 2,...,n — 1 there exists a finite set of values of the parameter A at
which the polynomials P;(x + th(A)) have smaller degree in ¢ than deg P;, in particular, degree
0. Hence there exists a number Ay # 0 such that deg Py (x + th(Ag)) = m with respect to ¢, and
the polynomials P; depend on /1(Ag) for 1 < i < n. Moreover, P, also depends on h(Ag), since
Py (x+th(Ag)) = Py(x + tAohy). Therefore, I := h(Ap) is the required element for . The lemma
is now proved. ]

Theorem 2.2. Let X be a complex vector space of arbitrary (possibly infinite) dimension, and let
Pi(x),...,Pu(x) € Po(X), where Po(X) is an FT-algebra. Then there exists an element h € X, a
subspace Z complementary to Ch in X, and polynomial functionals Gy, ..., G,—1 € Po(X) such that:

(1) gr(z+th) =g(z) Vze Z,teCk=1,...,n—1.

(2) All Gy belong to the ideal (Py, ..., Py) in the algebra Py(X).

(3) The set of zeros of the ideal (g1,...,8n—1) in the algebra Py(Z) is the projection of the zeros of

the ideal (Py, ..., Py) in Po(X) onto the subspace Z along h.
4) Ifgr=0,k=1,...,n—1,then Py, ..., P, have a common divisor.
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Proof. Let deg P; = maxdeg P; and let 1 € X be an element such that the degree of the polyno-
1

mial P (x + th) in the variable ¢ € C equals deg P; for all x € X and the polynomials Py, ..., P,
depend on /. Such an element exists in accordance with Lemma 2.1. Concider the polynomials
Py, ..., P, as elements of the algebra (Py(Z))[t], where Z is a closed subspace complementary
to Chin X. That is, the elements of the algebra (Py(Z))[t] are polynomials of  with coefficients
in the fieldof quotients of elements of Py(Z). We shall denote them by Py(#),..., P, (t) respec-
tively. We may assume that deg Py (t) > P,(t) > ... > P,(t). Division with remainder holds
in the algebra (Py(Z))[t]. Therefore for Py (t) and P,(t) there exist Pi(t) and P} (t) in (Po(Z))|[t]
such that

Py — Q)P = P}. (2.1)
If deg P} > deg P, there exist Q! and P} in (Py(Z))[#] such that
P} — QP =Pl (2.2)

When deg P} < deg P5, we set Q1 = 0, P} = P}. Continuing this process, we obtain the follow-
ing relations:

(2.3)

Phy = QiPy = Py, (2.4)
where deg P, ;1 < deg P,,. From relations (2.1)-(2.4), we have:

~ n ~ ~
Py — ,22 QP = Puy1.
1=

For the elements P, ..., P, ;1 € (Py(Z))[t] we obtain similarly the relations

L ondl oo ~
b — ,23 Qi Pi = Ppyo,
1=

deg B, » < degP,,1;for Ps,..., P, 2

L ME2 L ~
Ps— ,24 Q;/Pi = Ppys,
1=
deg B, |3 < deg P, and so on.
Since the sequence deg P, 1, deg P, 15, . . . is strictly decreasing, by continuing this process we
obtain for a coefficient k1 :

_ ntky—2 . _
Poa— L Qi'Pr =Py
ik
Moreover, deg B, ,x,_1 = 0, thatis, B, x,_1 € Po(Z). We introduce the notation Gy = B, ,, 1.
Consider the elements Py, (t), ..., Pk, —2(t) € (Po(Z))[t]. There are n — 1 of them, all depend-
ing on t. Applying the preceding reasoning to them, we obtain for some k, > k1 :

~ 1/l+k2—3 ko = ~
2 _
P, 1 — Qi"Pi = Pyyky—2s
i~k
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where P, ,_2 € Po(Z), deg Py k,—» < degP, k,—5 < .... We introduce the notation G, =
B, k,—2. Consider the polynomials By, (t),..., P, k,—3(t) € (Po(Z))[t]. There are n — 2 of them,
all dependent on ¢, and the preceding reasoning is applicable to them.

Thus at step r we obtain, for some ky > k,—1>_ >p,

_ ntk,—r—2 X
Br,—1— Z Qi"P; = Pyy—r—1,
i=k,
where B, _, 1 € Py(Z). We introduce the notation G, = P, ;4 _, 1. Atstepr = n— 1 our
algorithm coincides with the Euclidean algorithm for the polynomials P (#), e 11(¢). That
is, for some k,,_1 > ... > k1 we find:

k,
P, —Q” 1+1Pkn 1 =Dr, 12
Py,—a— an_gpkn—3 Iy (2.5)
Py, —5— an_zpkn—z = D,1, (2.6)

where Py 1 € Py(Z). We introduce the notation G,,—1 = P, _1.

It is clear from the algorithm that all the polynomials P; € (Py(Z))[t] belong to the ideal
(Py, By, ..., P,) in the algebra (Py(Z))[t]. In particular, this is true also for G, = B, _1. That s,
there exist polynomials V¥, k =1,...,n—1,i = 1,...,n, in the algebra (Po(Z))[t] such that

n o~
Y BV =Gy
i1

for k = 1,...,n — 1. Multiplying each of these equalities by the common denominator g €
Po(Z) of the coefficients of the terms of degree ¢ in Py(Z) and passing to the algebra Py(X), we
find that there exist polynomials vf € Py(X), such that

Pk
21 Poi = g, (2.7)
1=

where g = Gyay.

Thus we have found a sequence of polynomials g1, ..., ¢,—1, that actually belong to Py(Z),
more precisely: ¢x(z + th) = gx(2)Vz € Z. In addition, all g belong to the ideal (P, ..., P,).
Let zgp € Z be a common zero of the polynomials gx. Then zy + th is a common zero of g,
k=1,...,n—1, forany t € C. We multiply Eq. (2.6) by the common denominator by € Py(Z)
of the coefficients of the powers of t and pass to the algebra Py(Z). Then,

kn—3
Pr,—3 = 45 5 Pk,—2 = §n—1,

where P, = Pby, q; = Q;by. Therefore P _3(zo + th) is divisible by P _5(zo + th) (since
Qn—1(z0 + th) = 0). Let us multiply Eq. (2.5) by by, the common denominator of the powers of ¢
in (2.5), and substitute the value of P, _3 in place of P _j itself:

Pkn—4—q11§ (gn 1 +qk Pk o) — P, 2 =0.

Taking account of the relation g,_1(z¢ + th) = 0, we find that P, _4(z + th) is divisible by
Py —2(zo + th). Working from bottom to top, we find that the polynomials b(zg + t11)P1(zo +
th),...,b(zo + th)Pu(zo + th) are divisible by Py _»(zo + th), where b is polynomial in Py(Z).
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Assume that Py, _»(zo + th) = const (with respect t). This means that the degree of the poly-
nomial Py, _,(zo + th) is less than the degree of the polynomial B, _,(t) € (Py(Z))[t], since
by construction deg P, _» > 0. Then we also have deg Py, _3(zo + th) < deg By, _3(t). Work-
ing from the bottom upward, we find that deg P;(zo + th), as a polynomial in ¢, is less than
deg P; = deg Py. But the equality deg P; = deg P; (which holds by the choice of &) means that
the monomial of highest degree in ¢ in the polynomial P;(zo + th) is independent of z € Z, so
that this is impossible. Hence Py _5(zo + th) # const, and therefore, first of all, the fact that
b(zo + th)P;(zo + th) is divisible by P, _»(zo + th) for 1 < i < nimplies that P;(zo + th) is divis-
ible by P _o(zo +th), 1 <i < n, since b is independent of /1 and P, _(zo + th) depends on I;;
second there exists to € C such that P, _»(zo + th) = 0. Thus xo = zo + toh is a common zero of
the polynomials Py, ..., P,.

As a result we have the following: if zj is a zero of the ideal (g1,...,£:—1), then for some f
we find that xo = zo + fo is a zero of the ideal (P, ..., P,). It follows from Egs. (2.7) that the
converse is also true: every zero of the ideal (Py,...,P,) is a zero of the ideal (g1,...,81-1),
and hence its projection of the zeros of the ideal (P4, ..., P;) on the subspace Z along h. In the
case when g = 0 for all k we find that all P;, i = 1,...,n, are divisible by P, _»(z + th) for
every z € Z, thatis, (Pi(x), ..., P,(x)) have the common divisor P, _,(x). The theorem is now
proved. ]

Remark 1. In the case dim X = 1 the proposed algorithm becomes the general Euclidean
algorithm for finding a common divisor for n polynomials in one variable

Corollary 2.3. Let | = (Py,. .., Py) be an ideal of polynomials in Po(X) and dim X > n. Then there
exist elements hy,..., hy € X, a subspace W C X of codimension m < n — 1, and a polynomial
f € Po(X) such that:
D fel
(2) f is independent of hy, ..., Ny, that is, for any w € W f(w + t1h1 + ... + twhm) = f(w),
where t1,. .., t, are arbitrary elements of C.
(3) The kernel of f is the projection of the set V (J) on W along the subspace Hy, = lin(hy, ..., hy).

Proof. We apply Theorem 2.2 to the ideal ] = (Py,...,Py). Let g1,...,8,—1 be polynomials, )
an element of X, Z is the subspace of X whose existence is guaranteed by the theorem. We
revise the notation for g} :=g;,i =1,...,n—1, 1 := h, Z; = Z. Applying Theorem 2.2 to the
polynomials g%, ceey g}q_l, we obtain polynomials g%, ceey gi_z, element /1, € X, and a subspace
Zy C X. Here hy can be chosen from the subspace Z; and Z, C Z;. Applying Theorem 2.2
several times at step m < n — 1, we obtain a polynomial ¢I* =: f € Py(X) such that f € ].

Indeed

J= (P P) D (8L s 8u1) 2 2 (81 =(f), fe(f) (2.8)
Let wy € ker f. Then by Theorem 2.2 we have wo + t9, € V((g0"™!, g5~ 1)) for some tJ,. Then
wo+ 19+ € V(g gr 1 ¢ 1)) for some #2 . Continuing, we find that wp + ) +
..+ € V(]) for some t),...,1) in the other hand, if xg € V(]), then xg € ker f. Moreover,

it follows from the inclusions (2.8) and Theorem 2.2 the independent of k1, ..., /i, so that the
projection of xg on W := Z,, belongs to the kernel of f. The corollary proved. O

We now recall some definitions from ideal theory.

Definition 2.4. The ideal rad] is the radical of the ideal J, if for any positive integer k the relation
P € Jimplies P € rad]. If ] = rad], then J is a radical ideal.
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Definition 2.5. An ideal | is prime if Py(X)/] is integral domain, that is the algebra Py(X)/]
has no zero divisor ideal is maximal if Py(X)/] is a field.

Theorem 2.6 (The Hilbert Nullstellensatz.). Let | be an ideal the FT-algebra Po(X), ] = (Py, ..., Py).
Then:

(1) IfV(]) = @, then | = (2.1).

(2) I(V(])) = rad].
Proof. Since this theorem is well known for the case dim X < oo, we can assume that dim X = oo
(hence > n). I follows immediately from Corollary 2.3. Therefore only Point 2 requires proof.

We apply reasoning that is well known for the finite-dimensional case [12]. Let f be an arbi-

trary polynomial algebra Py(X). Assume that f(x) = 0Vx € V(]). Lety € C be an additional
independent variable. Consider Py(X + y) of polynomials on the space X & Cy, that are poly-
nomials in Py(X) for each fixed y € C and polynomials in C[y|, the algebra of all polynomials
iny, for each fixed x € X. The algebra Py(X + y) is obviously an FT-algebra. Theorem 2.2 holds
init. The polynomials Py, ..., P, and fy — 1 have no common zeros. By Point 1 of the there exist
polynomials g1,. .., gu+1 € Po(X +y), such that

Y Pugi+ (fy—1)gni1 =1,
i=1

and ¢1,...,8n+1 depend on x € X and y. Since this is an identity, it remains valid also for
rational functionals the substitute y = % Hence,

1
Zpi%’(xr ?) =1
Reducing these to a common denominator, we find that for some N

Y Pgi(x)f N =1
Y Pgi(x) = fN,

where ¢/(x) = g;(x, f~1)fN € Py(X). But this means that fV belongs to the ideal . Hence
f € rad] theorem is now proved. O

or

We now give an example of an ideal generated by an infinite number of polynomials for
which the Nullstellensatz does not hold.

Example 2.7. Let H be a separable Hilbert space. Consider the ideal | generated by finite sums
of polynomials f;(x) = (x, e;) + a;, where (, ) is the inner product, (¢;) is an orthonormal basis
in H, and 4; € C. The only zero that this ideal can have is an element }_a;¢;. But if (a;) are

1
chosen so that this sum diverges in H, the ideal | has no zeros. But it is obvious that the ideal |
contains no units.

In the case n = 2 the next corollary gives a positive answer to Problem 27 of [10] (see also

[13]).

Corollary 2.8. Let Py, ..., P, be continuous polynomials on the Banach space X. Assume that there
exists a sequence of elements (x;)5° 4, ||x;|| = 1, such that Pi(x;) — 0asi — oo, 1 < k < n. Then the
polynomials Py, . .., P, have a common zero.
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Proof. Suppose such is not the case. Since the algebra P,(X) is an FT-algebra, according to
Theorem 2.2 there exist continuous polynomials g1, . . ., g, such that

qul—l-...—i—ann =1,
and this contradicts the fact that Py(x;) — o0, 1 < k < n. The corollary is now proved. O

Now consider the topology ¢ on X whose closed sets are the kernels of polynomials in Py(X),
along with finite unions and arbitrary intersections of them. It is easy to see that this is indeed
a topology. By analogy with the finite-dimensional case we call this topology the Zariski topol-
ogy. We remark that for different FT-algebras we obtain different Zariski topologies. In the case
of the algebra of continuous polynomials on X the Zariski topology is strictly weaker than the
topology on X. In this connection the following question arises.

3. THE NULLSTELLENSATZ FOR ALGEBRAS OF POLYNOMIALS ON BANACH SPACES

All results of this section are proved in [14].
Let X be a Banach space, and let P(X) be the algebra of all continuous polynomials defined
on X. Let Py(X) be a subalgebra of P(X).

Theorem 3.1. [2] Let Y be a complex vector space. Let A be an algebra of functions on Y such that the
restriction of each f € A to any finite dimensional subspace of Y is an analytic polynomial. Let I be a
proper ideal in A. Then there is a net () in Y such that f(y,) — 0 forall f € I.

Here we need a technical lemma.

Lemma 3.2. [2] Let Y be a complex vector space. Let F = (f1,..., fu) be a map from Y to C" such
that the restriction of each f; to any finite dimensional space of Y is a polynomial. Then the closure of the
range of F, F(X)™ is an algebraic variety. Moreover there exists a finite dimensional subspace Yo C X
such that F(Yo)~ = F(X)~.

Theorem 3.3. Let Py(X) be a subalgebra of P(X) with unity which contains all finite type polynomials.
Let ] be an ideal in Po(X) which is generated by a finite number of polynomials Py, ..., P, € Po(X). If
the polynomials Py, . . ., P, have no common zeros, then | is not proper.

Proof. According to Lemma 3.2 there exists a finite dimensional subspace Yy = C" C X such
that F(Yp)~ = F(X)~ where F(x) = (P1(x),...,Py(x)). Let ey, ..., e, be a basis in Yy and
e3, ..., ey, be the coordinate functionals. Denote by Py |y, the restriction of Py to Y;. Since dim Y =
m < oo, there exists a continuous projection T : X — Yp. So any polynomial Q € P(Y)) can be
exended to a polynomial Q € Py(X) by formula Q = Q(T(x)). Q belongs to Py(X) becouse it
is a finite type polynomial. Let us consider the map
G(x) = (Pi(x),..., Py(x),6(x),...,65(x)) : X — C™t".

By definition of G, G(X)™ = G(Yy)~.

Suppose that ] is a proper ideal in Py(X) and so | is contained in a maximal ideal Jj;. Let ¢
be a complex homomorphism such that [y = ker ¢. By Theorem 3.1 there exists a Py- conver-
gent net (x,) such that ¢(P) = lim, P(x,) for every Py(X). Since G(X)~ = G(Yy)~, there is
a net (zg C Yp) such that lim, G(x,) = limg G(zg). Note that each polynomial Q € P(Yp)
is generated by the coordinate functionals. Thus limg Q(zg) = lim, Q(x«) = $(Q). Also
limg Pyly,(zg) = limy Pe(xs) = ¢(Px), k = 1,...,n. On the other hand, every Pp-convergent
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net on a finite dimensional subspace is weakly convergent and so it converges to a point
xo € Yo C X. Thus Pi(xg) = 0 for 1 < k < n that contradicts the assumption that Py, ..., Py,
have no common zeros. O]

A subalgebra A of an algebra A is called factorial if for every f € Ag the equality f = fi1f2
implies that f1 € Ag and f2 € Ao.

Theorem 3.4 (Hilbert Nullstellensatz Theorem). Let Py(X) be a factorial subalgebra in P (X) which
contains all polynomials of finite type and let | be an ideal of Py(X) which is generated by a finite
sequence of polynomials Py, ..., P,. Then rad] C Py(X) and

IV(])] = rad]
in Po(X).
Proof. Since Py(X) is factorial, rad] C Po(X) for every ideal | € Py(X). Evidently, I[V(])] D
rad].Let P € Py(X) and P(x) = 0 forevery x € V(J). Lety € Cbe an additional “independent
variable” which is associated with a basis vector e of an extra dimension. Consider a Banach
space X & Ce = {x +ye: x € X,y € C}. We denote by Py(X) @ P(C) the algebra of polyno-
mials on X & Ce such that every polynomial in Py(X) @ P(C) belongs to Py(X) for arbitrary

y € C. The polynomials Py, ..., P,, Py — 1 have no common zeros. By Theorem 3.3 there are
polynomials Q1, ..., Qui1 € Po(X) @ P(C) such that

Y PQi+ (Py—1)Qu1 =1
i—1

Since it is an identity it will be still true for all vectors x such that P(x) # 0 if we substitute
y =1/P(x). Thus

ipi(x)Qi(X,l/P(X)) =1.

Taking a common denominator, we find that for some positive integer N,

Y P(x)Q(x)PN(x) = 1

i=1

or
n
x P;(x)Ql(x) = PN(x), (3.1)
1=
where Q'(x) = Q(x, P~ PN(x) € Py(X). The equality (3.1) holds on an open subset X ker P,
so it holds for every x € X. But it means that PN belongs to J. So P € rad]. O

4. THE NULLSTELLENSATZ FOR ALGEBRAS OF SYMMETRIC POLYNOMIALS ON Ep

Let X be a Banach space, and let P(X) be the algebra of all continuous polynomials defined
on X. Let Py(X) be a subalgebra of P(X). A sequence (G;); of polynomials is called an al-
gebraic basis of Py(X) if for every P € Py(X) there is g € P(C) for some n such that P(x) =
g(G1(x), ..., Gy(x)); in other words, if G is the mapping x € X ~» G(x) := (G1(x),...,Gu(x)) €
C", then P =go G.
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Let Ps(X) be the algebra of all symmetric polynomials. Let (p) be the smallest integer that
is greater than or equal to p. In [5], it is proved that the polynomials F.(} a,e;) = Zaif for
k = (p),(p) +1,... form an algebraic basis in Ps(£,). So there are no symmetric polynomials
of degree less than (p) in Ps(£,) and if (p1) = (p2), then Ps(L),,) = Ps(Lp,). Thus, without loss
of generality we can consider Ps(£,) only for integer values of p. Throughout, we shall assume
that p is an integer, 1 < p < co.

It is well known [8] that for n < oo any polynomial in Ps(C") is uniquely representable as a
polynomial in the elementary symmetric polynomials (R;)?_q, Ri(x) = Y, <. <k, Xky - - - Xk;-

In paper [1] was proof next results.

Lemma 4.1. Let {Gy,..., G} be an algebraic basis of Ps(C"). For any & = (&1,...,&n) € C", there
isx = (x1,...,%n) € C"such that Gi(x) =¢;,i=1,...,n. If forsomey = (y1,...,Yn), Gi(y) = i
i=1,...,n, then x =y up to a permutation.

Proof. First, we suppose that G; = R;. Then, according to the Vieta formulae [8], the solutions
of the equation

élxnl +(=1)"8 =0

satisfy the conditions R;(x) = ¢;, and so x = (xl, . ) s required. Now let G; be an arbitrary
algebraic basis of Ps(C"). Then R;(x) = v;(Gy(x ) ..., Gu(x)) for some polynomials v; on C".
Setting v as the polynomial mapping x € C" ~» v(x) := (v1(x),...,va(x)) € C", we have
R=vo0G.

As the elementary symmetric polynomials also form a basis, there is a polynomial mapping
w:C" — C"suchthat G = woR; hence R = (vow) o Rsovow = id. Then v and w are inverse
to each other, since w o v coincides with the identity on the open set, Im(w). In particular, v is
one-to-one.

Now, the solutions x1, ..., x,, of the equation

X — o1 (E, . E)X T L+ (=) (8, E) =0
satisfy the conditions R;(x) = v;(¢),i = 1,...,n. Thatis, v(¢) = R(x) = v(G(x)), and hence
¢ = Glx). O
Corollary 4.2. Given (G1,...,8n) € C", thereis x € £, "0 such that

( ) g1, p+n l( ) Cn-

Proposition 4.3 (Nullstellensatz). Let Py, ..., Py € Ps(€p) be such thatker PN ... Nker Py, = &
m

Then there are Q1, ..., Qm € Ps(Lp) such that '} P;Q; = 1.
i=1

Proof. Let n = max(deg P;). We may assume that P;(x) = g;(Fy(x),..., Fi(x)) for some g; €
1

P(C"~P*H1). Let us suppose that at some point & € C"P*1, ¢ = (¢&1,...,&,_,11) and g:() =0.
Then by Corollary 4.2 there is xo € ¢, such that Fj(xo) = ¢;. So the common set of zeros of
all g; is empty. Thus by the Hilbert Nullstellensatz there are polynomials ¢, . .., g, such that

y8iqi = 1. Put Qi(x) = qi(Fp(x), ..., Fa(x)). O



68  V.V. Kravtsiv

5. THE NULLSTELLENSATZ FOR ALGEBRAS OF BLOCK-SYMMETRIC POLYNOMIALS

Let
X2 _ @51 (C2

be an infinite /1-sum of copies of Banach space C2. So any element ¥ € X2 can be represented
[e0]
as a sequence ¥ = (X1, ...,Xn, . ..), where x, € C?, with the norm ||| = ¥ [|x|-
k=1

A polynomial P on the space X2 is called block-symmetric (or vector-symmetric) if:

P (xg(l),...,xg(n),...> =P(x1,..-, Xn,.-.),

where x; € C? for every permutation ¢ on the set N. Let us denote by Pys(X?) the algebra of
block-symmetric polynomials on A2
In paper [7] it was shown that the algebraic basis of algebra Pys(X'?) is form by polynomials

HPP P y) = L5y,
i=1
where 0 < p <, (x;,y;) € C2.
Let us denote by P (X?) the subalgebra of Pys(X'2) which is generated by polynomials
HY (x,y),..., H"P(x,y).

The number of these elements is equal to m and we denote by 77 the system of generators of
algebra P (X?).
Let (x,y), (z,t) € A2,

and

(z,t) = (( ';1 )( fZ ))

where (x;,v;), (zi, t;) € C2. We put
nven=((3):(2)(32) ()

Tien (N y) = f(x,y) o (2,1)). (5.1)
We will say that (x,y) — (x,y) e (z,1) is the block symmetric translation and the operator 7
is the symmetric translation operator. Evidently, we have that

HAY% ((x,y) o (z,1)) = HY (x,y) + HY (2,1)

and define

for all kq, k».
For some positive number k denote by gk, a1y, ..., k—1, complex k" roots of the unity,

namely &, ; = e2™7/k, The following lemma is well known.
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k-1

n —

Lemma 5.1. For some posm; Yng = h {tmber n

=0
k if n=0 modk
0 otherwise.

k—1
no_
m;O “m,k =h

Lemma 5.2. For any HP""™F € i on X2 and for any &, n—p there exist a vector

o X1 X2 XNy < 0 >
xl - - 4 AR 7 AR
( y)P,n 14 < < yl > < yz > < pr,nfp ) O
in X% such that HP"™P = ¢, 4_p, H"v2 =0forallly #p,lo #n—p

Proof. Let us consider two cases:

(1) p=0orn=p;

(2 p#0,n#p.

1. If p = Oor n = p, then the polynomials H"(x,y) = Fp(y) and HP'(x,y) = Fy(x)
are symmetric relatively vectors y = (y1,...,Yu,...), x = (x1,.. - .) respectively. In the
paper [1, p. 57] is proof that for symmetric polynomial F(x) = Z xk exist the vector xg =

(x4, x3,...,x,...) € {1 such that F(xo) = &, Fi(x9) = 0. Then for the polynomial H??(x,y)

there exists vector (xo,0),0 such that H??((xq,0),0) = &p0 and H2((x0,0),0) = 0 for all
I # p,l> # 0.1f we have p = 0 then there exists vector (0, yo)o,, such that H"*((0,y0)o,n) = Con
and Hllflz((O,yo)oln) =O0forallly #0,l, #n.

2. For the second case we consider polynomials

HPE=P(x,y) = nylper;j;

of degree k, where 1 < p < k. First we assume thatp > k—p, p > % and consider the vector

n+1—(k— n+1—(k—
(Y,y) _ << ﬂ(“o,p(n+1)>p =) >, < ”<"‘1,p(ﬂ+1)>p = ),. .,
b (“0,p(n+l)> b ("‘Lp(wl))

n+1—(k—
< ‘1("‘p(n+1)—1,p(n+1)>p+ - ) < 0 ))
b(#p(41)-1,p(n11)) 0

where ; ,(,, 1) is the i roots of complex p(n + 1) roots of the unity.

ip
According to Lemma 5.1 we have H?*P(x,y) = p(n + 1)a’b*~F. On the system of gen-

erating ;% there exists a polynomial which is not equal to zero at (¥,¥). Let us denote by
HPvR=p, L HPYRTPL | < nthe polynomials such that
piin+1—(k—p))+pki—pi) =0 mod p(n+1), i=1,...,1

For this polynomials we have HF#i=Fi(X,7) = p;(n + 1)aPibki—ri,i = 1,...,1. All other polyno-
mials of the system 7% are equal of zero at (%, 7).
We note thatforalli =1,...,1 k; # k. Indeed let k1 = k. In the case p; < p we obtain

prin+1—(k—p))+plki—p1) =+ p1+k(p—p1) = (n+1-k)p1+kp < p(n+1).
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From this inequality it follows

pr(n+1—(k—p))+plki—p1) #0 mod p(n+1),

that contradicts above hypothesis.
In the case p1 > p we obtain

pin+1l—(k=p))+plki—p1)=n+p1+klp—p1) =n+1-kpr+kp <pi(n+1).
From this inequality it follows that for the condition p1(n +1) = 0 mod p(n + 1) necessary
p1=sp,s >1,sc N

Since p > %, then p1 > s%. Sinces > 1 and s € N, then if s;,in = 2 we obtain that p; > k, wich
is impossible. Therefore, k; # k.

Now we show that k < k; foralli = 1,...,[. Indeed leti = 1 k; < k. For the polynomial
HPVYM1=P1 we have p1(n 41— (k—p)) + p(k1 — p1) =0 mod p(n + 1). From inequality ki < k
it follows that

pi(n+1—(k—p))+plks —p1) =p1(n+1—k)+ pk. (5.2)

If p1 < p we obtain:

pr(n+1—k)+pk < p(n+1).
Therefore p1(n+1— (k—p)) +plky —p1) #0 mod p(n+1).

If p1 > p, then

p1(n+1—k)+ pk < p1(n+1).
In order to last expression of inequality will evenly divided on p(# + 1) necessary that p1 = sp.
Since p > &, then p > %, then p1 > skz—l. If s = 1 weobtainthat py(n+1— (k—p)) + plk1 —
p1) = pn+1—(k—p))+plki —p) = p(n+1) —p(k—ki1) < p(n+ 1). Therefore on this
case pr(n+1—(k—p))+plki—p1) #0 mod p(n+1).If s > 2 we obtain p; > ki, wich is
impossible. Therefore k < k; foralli=1,...,1.

We will show that p; =sp, kj =skforalli =1,...,]. Indeed from

pin+1—(k—p))+plk—p)=0 modp(n+1)
it follows that
mp(n+1—(k=p))+pmk—p)=0 modp(n+1),
where m > 1 (the case m < 1 is impossible because mk < k). Therefore we obtain the poly-
nomials H™P"=P), which will be among the polynomials HPV¥1=P1, ..., HPIK1=PI_ We suppose

that there exist polynomials H751k=P+%2 where s < p, 5o < k — p.
Then

(p+s))(n+1—=(k=p))+plk—p+s) = pn+1-(k—p))+plk—p)
+ s1(n4+1—(k—p))psa.
Since p(n+1— (k—p)) +plk—p) =0 mod p(n+ 1), then should performed the codition
siin+1—(k—p))+ps2 =0 mod p(n+1),

wich is impossible because s1(n +1— (k—p)) + psa < p(n+1—(k—p)) +plk—p) = p(n +
1). Therefore all polynomials HPvki=p1 o HPATPL are of the form H™PmE=p) =2, w
where wk < n + 1. Therefore the polynomials H”*1=71, ... HPIK=Pt we can mark as

HPvki—a = pRp2lk-p) greke—pr — pdeslep) o pgecki—pe — g Dp ) -p)

where (I + 1)k <n+ 1.
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Next we concider the vector

1= (k— G
E7) :<< a Z\k/ Lo pnt)) (k=p) >,. . < a Z 1<Dép(n+l)—l,p(n+l)>p - >,. .,
by — ( p(n+1) ) bv— (D‘p n+1)—1 p(n+l)>

n+1—(k— n+1—(k—
< a i*ix/ 1(my, (+1)>p+ (=) >,...,< a ii\/ L&y i1)— 1,p(n+1)>p+ =) >,
b (+ )\/ 1(“0,p(n+l)> b (+ )\/ 1<“p(n+l)—l,p(n+l)>

a ¥/ =1V ~1(a, n+1)>n+l_(k_p) a¥—-1% —1(Dcp(n+1)_1,p(n+l))Hl_(k_p)
YTV Ts0y0010)" SN o

i+1)k/ 1 k(+1) _1

a1 W (DCO,p(nJrl))nJrl—(k—P)
b l\k/_—l (1+1)\]€/_—1<“0,p(n+1)>p S ey

a (i+1)\k/_—1 (j+1)<c/_—1<“p(n+l)—l,p(n+l)>n+l_(k_p)
p G )\k/—l } \/_ Sy

a liZ\k/ —1... l:l\k/ —1 <060,p(n+1)>n+1_(k_p) .
b irk/ 117]k/_1 <“0,p(n+l)>p 4

n+1—(k—p)
p(n+l)> ) o

p 7 7
p(n+l)>

a ‘ —1... l‘l ]‘\k/ _1<Dcp(n+l)—l,
b l]‘\k/ —1... ll*]’\k/ —1 <DC (n+1)_1,

p

a Z\k/_—l » l{f/_—l (IH)\k/_—l(“O,p(nJrl)>n+l_(k_p)
bZk/—l... 1k / 1 (1+1 k/_1<“0,p(n+l)>p Ry

p(n+1)>p

a¥/—1... %=1 (”1)(‘/——1(%(”“)_1,}7(”“)>n+l—(k—P) 0
b X7 lk/—_1 (M)k/—_l(“p(nﬂ)—l, ’ 0 s .
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Then we obtain that

HPEP (7)o 37) = al%“"_’”<v<n+1>—p<n+1>+p<n+1>Z<v D"
j=1
i
I
— pn+1) Z( )
] 1
] i
l .
Foplien) Y (WAL D)
1< <jr1
i
l .
1< <ji1
i

For HP*—? we obtain

HPP((x,7) o (%,Y) = pln+1)a’b*=? <1 + ZZ: N1+

j=1
l . .
+ Y f%/—1...flv—1+\2/—1...\1/—1”\1/—1) (5.3)
<<t

We denote by M the next condition

_1+Z“\1/_+ A+ Z V=1... "/ =14+v=1..v=1"V-1.

<<jiza

If we choice (j + 1) a complex root of —1,j = 1,...t such that M # 0 to zero, we obtain

HPF=P((x,7) o (%,7)) # 0.

If we substitute to (5.3)

1
VT pmrom Vo P

HPP((x,7) o (3,9)) = P ((0, ) pi-p) = Epie—pr
In the case p < k — p we consider the vector

_ a(&o (k—p)(n a(&1 (k—p\(n
(%,7) = << b< 0,(k—p)( +1)>n+l_p )( (1, p)( +1)>n+1_p )

(véo,(k— p)(n+1)> b <“1,(k—p)(n+1)>

k—
< a(uc(k_ Y1) — (k—p)(n+l)> j ) < 8 ) )
n —p 7 AR 7

b (- p)(nt1) -1, (k= p) (14 1))

where &; ) (441) 18 i root of (k — p)(n + 1) complex root of the unity. For this case the proof
is the same like in the case p > k — p. H

we obtain

\_/\_/
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Corollary 5.3. Let t/ = {HP/~P(x,y),0 < p < j,j = 1,...,n}, j < m. Then for each & =
(E1,07 -+ Cpkepr- - Cppi—p) € C™ thereis (xX,y) pi—p € X2 such that HP*=P((x,y)pg) = &p—p-

Proposition 5.4. Let Py,..., Py € Pus(X?) such that ker Py N ... Nker Py, = &. Then there are
Ql/ ey Qm c va(-)(z) such that

m
Y PQi=1
i=1

Proof. For the proof we use the same method as in [1, p. 58]. Let n = max;(deg P;). We may as-
sume that P;(x,y) = g;(H'?,..., H =) for some g; € P(C"), where 0 < I1 < k, n is number of
polynomials H'¥~!. Tet us suppose that at some point & € C", & = (&1, -- -, CpfmprerCplfi—p')

and g;(¢) = 0. Then by Corollary 5.3 there is (x,y),x_, € X? such that H"*~7((x,y)px—p) =
&pk—p- SO the common set of zeros of all g; is empty. Thus by the Hilbert Nullstellensatz there

are polynomials g1, ..., ¢m such that Y, g;¢; = 1. Put Q;(x,y) = ¢;(HY, ..., H/F=h), O
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HYPERCYCLIC COMPOSITION OPERATORS

Z.H. Mozhyrovska

Abstract. In this paper we give survey of hypercyclic composition operators. In pacticular,
we represent new classes of hypercyclic composition operators on the spaces of analytic
functions.

Keywords: hypercyclic operators, functional spaces, polynomial automorphisms, symmet-
ric functions

1 Introduction

Hypercyclicity is a young and rapidly evolving branch of functional analysis, which was
probably born in 1982 with the Ph.D. thesis of Kitai [24]. It has become rather popular, thanks
to the efforts of many mathematicians. In particular, the seminal paper [17] by Godefroy and
Shapiro, the survey [20] by Grosse-Erdmann and useful notes [37] by Shapiro have had a con-
siderable influence on both its internal development. Let us recall a definition of hypercyclic
operator.

Definition 1.1. Let X be a Frechet linear space. A continuous linear operator T : X ~ X
is called hypercyclic if there is a vector x0 £ X for which the orbit under T, Orb(T, x0) =
{x0, Tx0, T2x0, ...} is dense in X . Every such vector x0 is called a hypercyclic vector of T.

The investigation of hypercyclic operators has relation to invariant subspaces problem. It
is easy to check that if every nonzero vector of X is hypercyclic for T, then T has no closed
invariant subsets, and so no closed invariant subspaces as well. In his paper [32] Read shows
that there exists continuous linear operator on i\ for which every nonzero vector is hypercyclic.
It is still open problem does exist a linear continuous operator on a separable Hilbert space
without closed invariant subspaces.

The classical Birkhoff's theorem [7] asserts that any operator of composition with translation
XN x+ a Ta:f(x) ™ f(x+ a), (a= 0)ishypercyclic on the space of entire functions H (C) on


http://jpnu.pu.if.ua

76  Z.H. Mozhyrovska

the complex plane C, endowed with the topology of uniform convergence on compact subsets.
The Birkhoft’s translation T, has also been regarded as a differentiation operator

o n

a

Ta(f) = Z _an'

|
=0 n:

In 1941, Seidel and Walsh [35] obtained an analogue for non-Euclidean translates in the unit
disk . Variants and strengthenings of the theorems of Birkhoff and Seidel and Walsh were
found by Heins [22], Luh [25], [26] and Shapiro [36], while Gauthier [15] gave a new proof of
Birkhoff’s theorem.

In 1952, MacLane [27] showed that there exists an entire function f whose derivatives f (n)
(n € Np) form a dense set in the space H(C) of entire functions, in other words, that the
differentiation operator D is hypercyclic on H(C). This result was rederived by Blair and Rubel
[8]. Duyos-Ruiz [14] showed the residuality of set of entire functions that are hypercyclic for D;
see also [16] and [19].

The most remarkable generalization of MacLane’s theorem, which at the same time also in-
cludes Birkhoff’s theorem was proved by Godefroy and Shapiro in [17]. They showed that if
¢(z) = ) cuz" is a non-constant entire function of exponential type on C”, then the operator

|a| >0

f— Y D',  feH(C" (1.1)

|a| >0

is hypercyclic.
We fix n € N and denote by T, : C* — C" the translation operator T,f(z) = f(z + a) for
a € C" and by Dy : C" — C" the differentiation operator Dy f(z) = g—é;(z) forl1 <k <n.

Theorem 1.2. (Godefroy, Shapiro). Let T be a continuous linear operator on H(C") that commuites with
all translation operators T,, a € C" (or, equivalently, with all differentiation operators Dy, 1 < k < n).
If T is not a scalar multiple of the identity, then T is hypercyclic.

Further hypercyclicity for differential and related operators are obtained by Mathew [2§],
Bernal [4] for spaces H(O), O C C open; by Bonet [9] for weighted inductive limits of spaces of
holomorphic functions.

Let us recall that an operator C, on H(C") is said to be a composition operator if Cy,f(x) =
f(p(x)) for some analytic map ¢: C" — C". It is known that only translation operator T, for
some a # 0 is a hypercyclic composition operator on H(C) [6]. However, if n > 1, H(C")
supports more hypercyclic composition operators. In [5] Bernal-Gonzdlez established some
necessary and sufficient conditions for a composition operator by an affine map to be hyper-
cyclic. In particular, in [5] it is proved that a given affine automorphism S = A 4+ b on C”, the
composition operator Cs : f(x) — f(S(x)) is hypercyclic if and only if the linear operator A is
bijective and the vector b is not in the range of A — I.

In [11] Chan and Shapiro show that T, is hypercyclic in various Hilbert spaces of entire func-
tions on C. More detailed they considered Hilbert spaces of entire functions of one complex

variable f(z) Z faz" with norms || f||3

2y = Z Y 2| fu|? for appropriated sequence of posi-

tive numbers and shown that if ny,/y,—1 is monotomcally decreasing, then T, is hypercyclic.
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In [34] Rolewicz proved that even though the backward shift operator B : /2(N) — /?(N) on
the space of square summable sequences defined by

B(Xl,X2,X3,. . ) = (X2,X3,. . )

is not hypercyclic, the operator AB (weighted backward shift) is hypercyclic for any A € C
with |[A| > 1. A related result which came later due to Kitai [24] and Gethner and Shapiro [16]
is that, in addition, the set of hypercyclic vectors is G5 and dense in /2(N). Further results on
hypercyclic operators are described in [20].

In this paper we represent the new classes of hypercyclic composition operators on spaces of
analytic functions. In Section 1 we consider some examples of hypercyclic composition opera-
tors on H(C). In Section 2 we find hypercyclic composition operators on H(C") which can not
be described by formula (1.1) but can be obtained from the translation operator using polyno-
mial automorphisms of C”. To do it we developed a method which involves the theory of sym-
metric analytic functions on Banach spaces. In the first subsection we discuss some relationship
between polynomial automorphisms on C” and the operation of changing of polynomial bases
in an algebra of symmetric analytic functions on the Banach space of summing sequences, /1.
We also consider operators of the form Ce~!T;Cg for a polynomial automorphism @ and show
that if Cs is a hypercyclic operator for some affine automorphism S on C”, then there exists a
representation of the form S = ®o (I 4+ b) o ©~1 + 4 that is we can write Cs = Co 1 T,CoT,. To
do it we use the method of symmetric polynomials on #/; as an important tool for constructing
and computations. In the next subsection we prove the hypercyclicity of a special operator on
an algebra of symmetric analytic functions on /1 which plays the role of translation in this al-
gebra. In Section 3 we propose a simple method how to construct analytic hypercyclic operator
on Fréchet spaces and Banach spaces. There are some examples. Some hypercyclic operators
on spaces of analytic functions on some algebraic manifolds are described in Section 4.

For details of the theory of analytic functions on Banach spaces we refer the reader to Dineen’s
book [13]. Note that an analogue of the Godefroy-Shapiro Theorem for a special class of entire
functions on Banach space with separable dual was proved by Aron and Bés in [2]. Current state
of theory of symmetric analytic functions on Banach spaces can be found in [1, 18]. Detailed
information about hypercyclic operators is given in [3].

2. TOPOLOGICAL TRANSITIVE, CHAOTIC AND MIXING COMPOSITION OPERATORS

This chapter provides an introduction to the theory of hypercyclicity. Fundamental concepts
such as topologically transitive, chaotic and mixing maps are defined. The Birkhoff transitivity
theorem is derived as a crucial tool for showing that a map has a dense orbit.

Definition 2.1. Let X be metric space. A continuous map T : X — X is called topologically
transitive if, for any pair U, V of nonempty open subsets of X, there exists some n > 0 such that
T"(U)NV # Q.

Topological transitivity can be interpreted as saying that T connects all nontrivial parts of X.
This is automatically the case whenever there is a point x € X with dense orbit under T. What
is less obvious is that, in separable complete metric spaces, the converse of this case is also true:
topologically transitive maps must have a dense orbit. This result was first obtained in 1920 by
G. D. Birkhoff in the context of maps on compact subsets of RN.
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Theorem 2.2. (Birkhoff transitivity theorem). Let T be a continuous map on a separable complete
metric space X without isolated points. Then the following assertions are equivalent:

(i) T is topologically transitive;

(ii) there exists some x € X such that Orb(x, T) is dense in X. If one of these conditions holds then the
set of points in X with dense orbit is a dense Gs-set.

Definition 2.3. Let T be a continuous map on a metric space X.

(a) A point x € X is called a fixed point of T if Tx = x.

(b) A point x € X is called a periodic point of T if there is some n > 1 such that T"x = x. The
least such number # is called the period of x.

Definition 2.4. (Devaney chaos). Let X be metric space. A continuous map T : X — X is said
to be chaotic (in the sense Devaney) if it satisfies the following conditions:

(i) T is topologically transitive;

(ii) T has a dense set of periodic points.

Definition 2.5. Let X be metric space. A continuous map T : X — X is called mixing if, for any
pair U, V of nonempty open subsets of X, there exists some N > 0 such that

T"(U)NV #£@ forall n>N.

Every mathematical theory has its notion of isomorphism. Let X, Y be metric space. When
do we want to consider two continuous operators S : Y — Y and T : X — X as equal? There
should be a homeomorphism ¢ : Y — X such that, when x € X corresponds toy € Y via ¢
then Tx should correspond to Sy via ¢. In other words, if x = ¢(y) then Tx = ¢(Sy). This is
equivalent to saying that To¢ = ¢ o S.

We recall that a homeomorphism is a bijective continuous map whose inverse is also contin-
uous. It is already enough to demand that ¢ is continuous with dense range.

Definition 2.6. Let X, Y be metric spaceand S: Y — Y, T : X — X be a continuous map.
(a) Then T is called guasiconjugate to S if there exists a continuous map ¢ : Y — X with dense
range such that T o ¢ = ¢ o S, that is, the diagramm

Yy 2 v
¢l L
x L X

commutes.
(b) If ¢ can be chosen to be a homeomorphism then S and T are called conjugate.

As we seen, operators may often be interpreted in various ways. MacLane’s operator is both
a differential operator and a weighted shift. Birkhoff’s operators are differential operators as
well. Here now we have interpretation of Birkhoff’s operators T,: they are special composition
operators. Writing
T.(z) =z+a
we see that 7, is an entire function such that

Tgf — f o Tg.
In fact, 7, is even an automorphism of C, that is, a bijective entire function. This observations

serve as the starting point of another major investigation: the hypercyclicity of general compo-
sition operators.
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The further results of this section we also can find in [21].
Let () be an arbitrary domain in C, thatis, a nonempty connected open set. An automorphism
of () is a bijective analytic function
p:Q—Q
its inverse is then also holomorphic. The set of all automorphisms of () is denoted by Aut((}).
Now, for ¢ € Aut(Q)) the corresponding composition operator is defined as

Cof =foq,
thatis, (Cyf)(z) = f(@(2)), z € Q.

Definition 2.7. Let () be a domain in C and ¢, : Q3 = ), n > 1, holomorphic maps. Then the
sequence (@) is called a run-away sequence if, for any compact subset K C (), there is some
n € Nsuch that ¢,(K) N K = @.

We will usually apply this definition to the sequence (¢"), of iterates of an automorphism ¢
on (). Let us consider two examples.

Example 2.8. (a) Let () = C. Then the automorphisms of C are the functions
p(z)=az+b, a#0, beC,

and (¢"), is run-away if and only ifa =1, b # 0.

Indeed, let ¢ be an automorphism of C. If ¢ is not a polynomial then, by the Casorati-
Weierstrass theorem, ¢({z € C;|z| > 1}) is dense in C and therefore intersects the set (D),
which is open by the open mapping theorem. Since this contradicts injectivity, ¢ must be a
polynomial. Again by injectivity, its degree must be one, so that ¢ is of the stated form. Now, if
a =1 then ¢"(z) = z + nb, so that we have the run-away property if and only if b # 0; while if
a # 1 then (1 —a)~'bis a fixed point of @ so that (¢™),, cannot be run-away.

(b) Let 3 = C* = C)\ {0}, the punctured plane. An argument as in (a) shows that the
automorphisms of C* are the functions

p(z)=az or ¢@(z)=-, a#0.
Then (¢"), is run-away if and only if ¢(z) = az with |a| # 1.

We first show that the run-away property is a necessary condition for the hypercyclicity of
the composition operator.

Proposition 2.9. Let Q) be a domain in C and ¢ € Aut(Q)). If Cyp is hypercyclic then (¢"), is a
run-away sequerce.

Corollary 2.10. There is no automorphism of C* whose composition operator is hypercyclic.

If O = C, the automorphisms are given by
p(z)=az+b, a#0, beC,

and C, is hypercyclic if and only if a = 1, b # 0; see Example 2.8(a). Thus the hypercyclic
composition operators on C are precisely Birkhoff’s translation operators.

Let us now consider the simply connected domains () other than C. By the Riemann mapping
theorem, () is conformally equivalent to the unit disk, that is, there is a conformal map ¢ : D —
Q. It suffices to study the case when () = ID.
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Proposition 2.11. The automorphisms of D are the linear fractional transformations

a—z
q)(z):bl_az, la] <1,|b| =1.

Moreover, ¢ maps T bijectively onto itself, where T is the unit circle.

Now, linear fractional transformations are a very well understood class of analytic maps. Us-
ing their properties it is not difficult to determine the dynamical behaviour of the corresponding
composition operators; via conjugacy these results can then be carried over to arbitrary simply
connected domains.

Theorem 2.12. Let ) be a simply connected domain and ¢ € Aut(Q). Then the following assertions
are equivalent:

(i) Cyp is hypercyclic;

(ii) Cyp is mixing;

(iii) C is chaotic;

(iv) (¢™)y is a run-away sequence;

(v) @ has no fixed point in C);

(vi) Cy is quasiconjugate to a Birkhoff's operator.

2.1. COMPOSITION OPERATORS ON THE HARDY SPACE

In this section we consider an interesting generalization of the backward shift operator. The
underlying space will be the Hardy space H2. Arguably its easiest definition is the following. If
(an)n>0 is a complex sequence such that

[o0]

Z |‘1n|2 < oo,

n=0
then it is, in particular, bounded, and hence

X
=Y az", z€Clz| <1,
—0

defines a analytic function on the complex unit disk ). The Hardy space is then defined as the
space of these functions, that is,

{f D — C; f(z) Zanz ZE]D)w1ch|an|2<00}

n=0 n=0

In other words, the Hardy space is simply the sequence space £?(Ny), with its elements written
as analytic functions. It is then clear that H? is a Banach space under the norm

1

2

£ = (io |an|2> whenf(2) = 3 0",

and it is even a Hilbert space under the inner product

(f,g Z anby, whenf(z) Z anz",¢(z Z b,7".

n=0

The polynomials form a dense subspace of H>.
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Let ¢ be an automorphism of the unit disk I and let C,f = f o ¢ be the corresponding
composition operator, where we now demand that f belongs to H>.

Proposition 2.13. Forany ¢ € Aut(ID), C,, defines an operator on H>.

Our aim now is to characterize when C, is hypercyclic on H2. It will be convenient to consider
@ as a particular linear fractional transformation.

Indeed, let ;
az +
p(z) = o d ad — bc # 0,

be an arbitrary linear fractional transformation, which we consider as a map on the extended
complex plane C = CU {oo}. Then ¢ has either one or two fixed points in C, or it is the identity.

Theorem 2.14. Let ¢ € Aut(ID) and C,, be the corresponding composition operator on H?. Then the
following assertions are equivalent:

(i) Cyp is hypercyclic;

(ii) Cp is mixing;

(iii) @ has no fixed point in D.

3. HYPERCYCLIC COMPOSITION OPERATOR ON SPACE OF SYMMETRIC FUNCTIONS

In this section we consider hypercyclic composition operators on space of symmetric analytic
functions, the basic results are given in [31].

3.1. POLYNOMIAL AUTOMORPHISMS AND SYMMETRIC FUNCTIONS

Definition 3.1. A polynomial map & = (®q,...,P,) from C" to C" is said to be a polynomial
automorphism if it is invertible and the inverse map is also a polynomial.

Definition 3.2. Let X be a Banach space with a symmetric basis (¢;)$°. A function g on X is

[e0]
called symmetric if for every x = ) _ x;e; € X,
i=1

g(x) = g(li Xi€i> = 8(12%%(1'))

for an arbitrary permutation ¢ on the set {1, ..., m} for any positive integer m.

Definition 3.3. The sequence of homogeneous polynomials (Pj)]?il, deg Py = k is called a homo-

geneous algebraic basis in the algebra of symmetric polynomials if for every symmetric polyno-
mial P of degree n on X there exists a polynomial 4 on C” such that

P(x) =q(P1(x),...,Pu(x)).

Throughout this paper we consider the case when X = /1. We denote by P;(#1) the algebra
of all symmetric polynomials on /1. The next two algebraic bases of Ps(¢1) are useful for us:
(Fe)roq (see [18]) and (Gy);> 4, where

Fx)=Y x and Gix)= Y x;--x.
i—1

i< <ig
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By the Newton formula G = F; and for every k > 1,

1
Grp1 = ——
k+1 k+1

Denote by HY (/1) the algebra of entire symmetric functions on #/; which is topologically gen-
erated by polynomials Fy, .. ., F,. It means that HY (#1) is the completion of the algebraic span of
F, ..., F; in the uniform topology on bounded subsets. We say that polynomials Py, ..., P, (not
necessary homogeneous) form an algebraic basis in Hl! (/1) if they topologically generate H! (/7).
Evidently, if (P;)7, is a homogeneous algebraic basis in Ps(¢1), then (P, ..., P,) is an algebraic

basis in H'(/1). We will use notations F := (F)}_; and G := (Gy)}_;.

Proposition 3.4. Let & = (P, ..., D,,) bea polynomial automorphism on C". Then (®1(P), ..., P, (P))
is an algebraic basis in H! (¢1) for an arbitrary algebraic basis P = (Py, ..., Py).

Conversely, if (®1(P), ..., P,(P)) is an algebraic basis for some algebraic basis P = (Py,...,Py) in
H!*(#1) and a polynomial map ® on C", then ® is a polynomial automorphism.

(=D)*Fy1 — BGy+ - + FGy).

Proof. Suppose that ® is a polynomial automorphism and
O =((@Ny,..., (@)

isitsinverse. Then Py = (&~ 1) (®1(P),...,®,(P)),1 < k < n. Hence polynomials ® (P), ..., ®,(P)
topologically generate H! (£1) and so they form an algebraic basis.

Let now (®1(P),..., P, (P)) be an algebraic basis in HJ (/1) for some algebraic basis P =
(P1,...,Py). Then for each P, 1 < k < n, there exists a polynomial g; on C” such that Py =
g (P1(P), ..., D, (P)). Put (@~ 1), (t) := gi(t), t € C" Since (P1(P),..., P,(P)) is an algebraic
basis, the map

(X1, ..., %) = (P1(P(x)), ..., P,(P(x)))

isontoby [1, Lemma 1.1]. Thus ®: C" — C" is a bijection and so the mapping ((®~1)y,...,(®71),)
is the inverse polynomial map for . O]

3.2. SIMILAR TRANSLATIONS

We start with an evident statement, which actually is a very special case of the Universal
Comparison Principle (see e.g. [20, Proposition 4]).

Proposition 3.5. Let T be a hypercyclic operator on X and A be an isomorphism of X. Then A™1TA is
hypercyclic.

We will say that A~'TA is a similar operator to T. If T = Cp is a composition operator on
H(C") and A = Cg is a composition by an analytic automorphism ® of C", then A~ITA =
Cooroq-1 15 @ composition operator too. If A is a composition with a polynomial automor-
phism, we will say that A~'TA is polynomially similar to T. Now we consider operators which
are similar to the translation composition T;: f(x) — f(x +a) on H(C").

Example 3.6. Let ®(t1, f5) = (t1,f» — #{*) for some positive integer m. Clearly, ® is a polynomial
automorphism and ®~1(zy,2p) = (21,22 + z"). So

O(t+a) = (H+aptat+a—(HH+m)™)

m—1 :
m— L
= <t1 —i—lll,tz—l-llz—tT—IZT— Z < j ]>t;n JIZ;).

=1
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Thus we have
m—1 m_] L
Do (I+a)o® () =P(®(t) +a) = <t1+a1,t2+a2—a’1”— Y. < ; >tT ]a71>.
=1

Hence the composition operator with the (m — 1)-degree polynomial ® o (I 4 a) o ®~ 1 is similar
to the translation operator T, = C(1,,) and so it must be hypercyclic. Here I is the identity
operator.

It is known (see [1]) that the map

FE f(ty, . tn) = f(F(x),..., Fi(x))
is a topological isomorphism from the algebra H(C") to the algebra H!' (/1). Now we will prove
more general statement.

Lemma 3.7. Let P = (Py)}!_, be an algebraic basis in H[ (£1). Then the map

FPflty, .. tn) = F(P1(x),...,Py(x))
is a topological isomorphism from H(C™) onto H! (41).

Proof. Evidently, T is a homomorphism. It is known [1] that for every vector (t1,...,t,) € C"
there exists an element x € /; such that P;(x) = tq,...,P,(x) = t,. Therefore the map FY is
injective. Let us show that Fy is surjective. Let u € H”(/1) and u = Y u; be the Taylor series
expansion of u at zero. For every homogeneous polynomial u; there exists a polynomial g; on

C" such that ux = qi(Py,..., Py). Put f(t1,...,ta) = Y_ q(t1, ..., ta). Since f is a power series
k=1

which converges for every vector (t1,...,t,), f is an entire analytic function on C". Evidently,
FY(f) = u. From the known theorem about automatic continuity of an isomorphism between
commutative finitely generated Fréchet algebras [23, p. 43] it follows that F» is continuous. [

Letx,y € f1,x = (x1,%,...) and y = (y1,¥2,...). We put

x ey = (X1,Y1,%2 Y2 )
and define
To(f)(x) = f(xoy).

We will say that x > x ey is the symmetric translation and the operator 7, is the symmetric
translation operator. It is clear that if f is a symmetric function, then f(x e y) is a symmetric
function for any fixed y.

In [12] is proved that 7, is a topological isomorphism from the algebra of symmetric analytic
functions to itself. Evidently, we have that

Fi(xey) = F(x) + F(y) (3.1)

for every k.
Letg € H'(f1) and & = (aq,...,&,). Set

M
st ) (RO ),

D'g = FyD*(F;) g = (

where f = (F£)lg.
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Theorem 3.8. Let y € ¢ such that (Fi(y),..., Fx(y)) is a nonzero vector in C". Then the symmetric
translation operator Ty is hypercyclic on HY (¢1). Moreover, every operator A on HE((1) which com-
mutes with Ty and is not a scalar multiple of the identity is hypercyclic and can be represented by

A(g) = ) D", (3.2)

|0
where c, are coefficients of a non-constant entire function of exponential type on C".

Proof. Leta = (F1(y),..., F.(y)) € C".If g € H!(#1), then
g(x) = Fa () (x) = f(A(x),..., Fa(x))
for some f € H!(/1) and property (3.1) implies that
Ty(8)(x) = FrTu(F) 7H(9) ().
So the proof follows from Proposition 3.5 and the Godefroy-Shapiro Theorem. O

A given algebraic basis P on H] (1) we set
Tpy = (Fu) ' TyFy and Dy :=(F;) 'D'Fy.

Corollary 3.9. Let P be an algebraic basis on Hl (¢1) and let y € 1 such that (Fi(y), ..., Fa(y)) # 0.
Then the operator Tpy is hypercyclic on H(C"). Moreover, every operator A on H(C") which commutes
with Tp,y and is not a scalar multiple of the identity is hypercyclic and can be represented by the form

A(f) = ) caD3f, (33)
|a| >0
where ¢, asin (1.1).
Note that due to Proposition 3.4 the transformation (F¥ ) =17, FF is nothing else than a com-
position with ® o (I 4+ a) o ®~1, where ®(Fy,..., F,) = (Py,...,P,) and a = (Fi(y),..., F.(y)).
Conversely, every polynomially similar operator to the translation can be represented by the

form (FF)~17,FF for some algebraic basis of symmetric polynomials P. This observation can
be helpful in order to construct some examples of such operators.

Example 3.10. Let us compute how looks the operator Tp, for P = G. We observe first that
Gr(x o y) = YF , Gi(x)Gi_i(y), where for the sake of convenience we take Gy = 1. Thus

Ty Fef(t, .o tn) = Tyf(Gi(x),...,Gu(x)) = f(Gi(x ®y),...,Gu(x o y))
n
= (G +Giy) s L Gl Gasily)).
i=0
Therefore
k 7
TG,yf(tl/ cey tn) = f(tl +by,..., Z Lbe_iy ..., Z tibn—i>/ (3.4)
i=0 i=0
where tg =1, bp = 1 and by = Gi(y) for 1 <k < n.
According to the Newton formula and Proposition 3.4 the corresponding polynomial auto-

morphism ® can be given of recurrence form ®1(t) = t, P 1(t) = 1/(k+ 1) ((=1)Ftpq —
t®1(t) + - - - + 11 Pk (¢)) which is not so good for computations.
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The hypercyclic operator in Example 3.6 is a composition with an m — 1 degree polynomial
and so does not commute with the translation because it can not be generated by formula (1.1).
However, the composition with an affine map in Example 3.10 still does not commute with Tj.
Indeed, by (3.4),

n
TaOTG,yf(tl,...,tn) :f<t1 + b +a1,...,2tibn_i+an>;
i—0

n

TG,y o Taf(tl,...,tn) :f<t1 + by +a1,...,2(ti+ai)bn_i>,
=0

where a9 = 1. Evidently, T, o Tg , # Tg,y © T, for some a # 0 whenever b # (0,...,0,b,).

Corollary 3.11. There exists a nonzero vector b € C" and a polynomial automorphism © on C" such
that ® o (14 b)O~1(t) = A(t) + c where A is a linear operator with the matrix of the form

1 1 0 0

A=l o 35
0o ... 1 1 (3.5)
0 0 1

and ¢ # 0.

Proof. We choose b € C" such that all coordinates by, 1 < k < n are positive numbers. Let &
be a polynomial automorphism associated with Tg ,, in Example 3.10, where y € /1 is such that
Gr(y) = b, 1 < k < n. Then, according to (3.4), we can write ® o (I + b)P~1(t) = R(t) + b,
where

1 0 o --- 0

by 1 o --- 0

R=| &
bn—2 bn—3 co 1 0

by by—2 -+ b 1

We recall that the index of an eigenvalue A of a matrix M is the smallest nonnegative integer k
such that rank((M — AI)F) = rank((M — AI)*1). The matrix R has a unique eigenvalue 1 and
since all coordinates by of b are positive, the index of this eigenvalue is equal to n. Indeed, for
eachk < n, (R — AI)* contains an (n — k) x (n — k) triangular matrix with only positive numbers
in the main diagonal and (R — AI)" = 0. Therefore, from the Linear Algebra we know that the
largest Jordan block A associated with the eigenvalue 1 is # x 1 and so it can be represented by
(3.5). Thus there is a linear isomorphism L on C” such that A = LRL™1. Hence

(Lo®)o(I+b)o(Lo®) () =Lo(R+b)oL71(t) = A(t)+ L(b).
So itis enough to set ® := Lo ® and ¢ := L(b). ]

Theorem 3.12. Let S be an affine automorphism on C" such that Cg is hypercyclic. Then there are
vectors a, b and a polynomial automorphism © on C" such that S = ®@o (I+b) c @~ +a.

Proof. Let S(t) = A(t) + ¢ be an affine map on C" such that Cg is hypercyclic. Without loss of
the generality we can assume that A is a direct sum of Jordan blocks Ay, ..., A, and each block
Aj acts on a subspace V; of C". In the proof of Theorem 3.1 of [5] is shown that the spectrum of
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each block A is the singleton {1}. So each A is of the form as in (3.5). Let ;) be a polynomial
automorphism of V; as in Corollary 3.11, that is,

O oI +b) o0 = Aj+ b,
for some b(]) € V] Put@ = @(1) +-- +®(m) and b = b(l) + -+ b(m) Then ® o (I—|— b) 0@ 1 =
A+b.Leta =c—b. Hence

S=A+c=A+b+a=0o(I+b)o@ 4a
(]

Of course, the converse of Theorem 3.12 (with b # 0) also holds.

We do not know whether it is always possible to choose @ so that a = 0. In other words: Is
every hypercyclic operator which is a composition by an affine automorphism polynomially similar to a
translation? Moreover, we do not know any example of a hypercyclic composition operator on
H(C") which is not similar to a translation.

3.3. THE INFINITY-DIMENSIONAL CASE

Let us recall a well known Kitai-Gethner-Shapiro theorem which is also known as the Hyper-
cyclicity Criterion.

Theorem 3.13. Let X be a separable Fréchet space and T: X — X be a linear and continuous operator.
Suppose there exist X, Yy dense subsets of X, a sequence (ng) of positive integers and a sequence of
mappings (possibly nonlinear, possibly not continuous) S, : Yo — X so that

(1) T™(x) — 0 for every x € Xo as k — co.

(2) Sy, (y) = Oforeveryy € Ypas k — .

(3) T"™ 0 S, (y) =y for every y € Y.
Then T is hypercyclic.

The operator T is said to satisfy the Hypercyclicity Criterion for full sequence if we can chose
ny = k. Note that T, satisfies the Hypercyclicity Criterion for full sequence [17] and so the
symmetric shift 7, on H(¢1) satisfies the Hypercyclicity Criterion for full sequence provided
(Fi(y), -, Faly)) # 0.

Finally, we establish our result about hypercyclic operators on the space of symmetric entire
functions on £1. But before this, we need the following general auxiliary statement, which might
be of some interest by itself.

Lemma 3.14. Let X be a Fréchet space and X1 C Xo C --- C Xy C -+ be a sequence of closed
subspaces such that | J;, 1 X is dense in X. Let T be an operator on X such that T(X,,) C X for each
m each restriction T|x,, satisfies the Hypercyclicity Criterion for full sequence on Xy,. Then T satisfies
the Hypercyclicity Criterion for full sequence on X.

Proof. Let Y(gm) and X(()m) be dense subsets in X;;, and S ,Em) corresponding sequence of mappings

associated with T|x,, as in Theorem 3.13. Put Xo = U%_; X{™ and Yo = U_; Y™ . It is clear
that both Xy and Y are dense in X. For a given y € Y, we denote by m(y) the minimal number

m such thaty € Yém). We set Si(y) := S,Em(y)) (y). Then

TF o Si(y) = Tk|xm(y) o Slgm(y))(y) =y, YyeY
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and S;(y) = Slgm(y))(y) — 0 ask — oo for every y € Yp. Similarly, if x € Xo, then x € X" for

some m and T"(x) = T¥|x, (x) — 0 as k — co. So T satisfies the Hypercyclicity Criterion for full
sequence on X. In particular, T is hypercyclic. O]

We denote by Hy(f1) the Fréchet algebra of symmetric entire functions on f1 which are
bounded on bounded subsets. This algebra is the completion of the space of symmetric poly-
nomials on /1 endowed with the uniform topology on bounded subsets.

Theorem 3.15. The symmetric operator Ty is hypercyclic on Hys(l1) for every y # 0.

Proof. Since y # 0, Fyu,(y) # 0 for some myg [1]. So, Ty is hypercyclic (and satisfies the Hy-
percyclicity Criterion for full sequence) on H{"({1) whenever m > my. The set Up,_,,, HJ" (¢1)
contains the space of all symmetric polynomials on ¢1 and so it is dense in Hp(£1). Also
H{'(f1) C H}(#)if n > m. Hence by Lemma 3.14, 7, is hypercyclic. O

4. ANALYTIC HYPERCYCLIC OPERATORS

In this section we will show a simple method how to construct polynomial and analytic
hypercyclic operators. Basic results of this section we can find in [29].

Let F be an analytic automorphism of X onto X and T be an hypercyclic operator on X. Then
Tr := FTF~! (and T;-1 := F~!TF as well) must be hypercyclic [20] and, in the general case,
they are nonlinear. The following examples show that Tr are nonlinear for some well known
hypercyclic operators T and simple analytic automorphisms F.

Example 4.1. Let A(D) be the disk-algebra of all analytic functions on the unit disk D of C

which are continuous on the closure D. Denote X1 = {Y_ ay1t*™ € A(D)} and X, =

k=0
(Y ant®™ € A(D)}. Clearly A(D) = X1 & Xo.
k=0
Forevery f = fi+ fo, f1 € X3, f2 € X> we put
F(f) = fu { F~ = fu
Then we have
{ F(f) = f+fi. F~ = h—f
So F is a polynomial automorphism of X. Let T(f(t)) = f(*51). Itis known that T is hypercyclic

on A(D) [10, p. 4].
Let us show that T = FTF~! is nonlinear. It is enough to check that Tr(Af) # ATr(f) for
some A € Cand f € A(D). Let f(t) =t + > € A(D). Then
Tr(Af) = F(T(F Y (At + Af%))) = F(T(At + A2 — A%2))
t+1 F+1\2
= F(T(M+ (A =A%) = F(A (%) + (=) (=))
(A = ARt (A +3A2—4A3 +AH2 (BA — AD)
= + +
2 4 4
forany A # 0, A # 1. Thus Tr(Af) # ATr(f).
By the similar way in the next example we consider the space of entire analytic functions
H(C) and T(f) = f(x + a) to show that Ty 1 is nonlinear, where F is defined as above.
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Example 4.2. Let f(t) =t +t?> € H(C) then F(f) = t + 2%, F(Af) = A(t + t?) + A*t?. Thus

T(E(Af)) = A(t+a) +2A(1 4 A)at + (A + A?) (¢ + a?)
for any A # 0. Since F~1(f) = t — t?, we have
FTITE(Af) = A(t+ %) — 42222 (¢t + 12) + Ala + a® + 2t) + 4A%at(t + a)
—d\at(t+a) —4A3@PP (2 + A) #£ AT (f).
So, the operator Ty-1 = F~'TF is nonlinear.

Example 4.3. Next we consider the Hilbert space ;. Let (ex)> ; be an orthonormal basis in £,

and x = Z xxex € f5. We define an analytic automorphism F : /5 — £, by the formula
k=1

F(Xpk—1€0k—1) = X2k—1€2k—1,
F(xorear) = xgpe™ % ley, k=12,....
Let T, be a weighted shift
Ty(x) = (px2, pxs,...).
T, is a hypercyclic operator if ;1| > 1 (see [34]). Then the operator Ty = FT,F —1ig hypercyclic.
We will show that Tr is nonlinear.

Leta € {p,a = (ay,az,...a,,...),4 = Z arer and A € C. We will show that Tr(Aa) # ATr(a).
k=1

F7IT,F(Aa) = (pAage™, y/\agemazeiw, uAage ™, y/\a5eVA“4€7M3, ce)e

So, Tr(Aa) # ATr(a) and moreover, the map A ~~ T,(Aa) is not polynomial. Thus Tr is an
analytic (not polynomial) hypercyclic map.

5. HYPERCYCLIC OPERATORS ON SPACES OF FUNCTIONS ON ALGEBRAIC MANIFOLDS

In this section we represent the basic results which had obtained in [30].
Letq1,...,qm be polynomials on C". We consider an ideal which is generated by the polyno-
mials

T=(q1,---/qn) :={qp1+- +qugu | pr € P(C"),k=1,...,n}.
Let V(Z) = N}_, ker gy be set of zeros of the ideal Z. The set V(ZT) is called algebraic set and on
this set we can define algebra of polynomials
P(V(Z)):=P(C")/1(V(T)),
where I(V(Z)) is set of polynomials, which are equal to zero on V(Z).

Definition 5.1. The ideal 7 is called simple if from p € 7 and p = p1p, follows that p; € 7 and
po € Z. In this case the set V(Z) is called algebraic manifold.

It is known from algebraic geometry (see [33]), that for simple ideal Z, I(V(Z)) = Z, and
algebra P(V(Z)) = P(C")/1(V(Z)) is ring integrity, that is ring without zero divisors. Every
element of algebra P(V(Z)) is class of equivalence for some p € P(C"),

pl={p+q:9€I}.
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We define algebra of entire analytic functions H(V(Z)) on the algebraic manifold V(Z) as set
of classes

{Ifl:lfl ={f+4q:9€ T} feHC"}
Let NV = {iy,...,ix} be some proper subsetin {1,2,...,n} and M = {j1,...,jm} =
={1,2,...,n}\\N.

The equation

£

sets in C" linear subspace L. From another side, if

1:ti2:~..:ti20 (5‘1)
t = CDl(Zl,...,Zn),

tn — @n(zl,. . .,Zn)

for polynomials @1, . .., ®;, then equation (5.1) in coordinates z; , . . ., z;, sets algebraic manifold

Vg
D (z1,.,20) =0, ..., ®; (21,...,24) = 0.

By striction map ® = (&4, ..., P,) on manifold Vi we get polynomial automorphism

CD]'l(Zl,. . .,Zn) = t]'l,

CD]'m(Zl,. . .,Zn) = t]'m

from V) on L x4, which we denote .
By the another words, manifold V, is image of subspace L at polynomial map

(@D, (&D‘l)]-m).

Theorem 5.2. Let a be non zero vector in L yq. Then composition operator with polynomial map &~ o
(I+ a) o D is hypercyclic operator on space H(V4).

Proof. The composition operator with translation I 4 a is hypercyclic map. Since @ is polyno-
mial automorphism from Vg in Ly, thus Cg is continuous homomorphism from H(L ) in

H(Vaq). Then, according to Universal Comparison Principle Cg_1, (ta)od = Cso0TuoCq1is

hypercyclic operator on space H(V). O

Example 5.3. Let ® : C> — C? be a polynomial automorphism:
{ =21
ty = zp + P(z1),
where P is some polynomial on C. Put N' = {2}, M = {1}. Then
Ly = {t=(t;,tr) € C*: 1, =0},

Vi ={z=(21,22) € C*: 2, + P(z1) = 0}.

The map ® : V4 — Ly is defined by formula ® : (z1,z5) — (t1,t2) = (z1,0). Thus 71 :
(t1,0) — (z1,22) = (t1,—P(#1)). Hence, for a = (a1,a2) € L, a1 # 0, ap = 0, automorphism
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@1 o (I+a) o ® we have a representation
®lo(I+a)od(z1,20) = D o(I+4a)(2,0)
Yz +a1,0)
= (z1+a1,—P(z1+m)),

where [ is identity operator on C?. Thus CgT.Cg-1(f)(z) = f((z1 + a1), —P(z1 + a1)) is hyper-
cyclic composition operator on V.

O
O~

The following questions are natural: Are there polynomials P € P(C") for which there is
polynomial automorphism from C*~1 in ker P? That is, for which P we can find polynomials
Pq,..., D, on C" such that, the map & = (P, P,, ..., P;) is polynomial automorphism?

It is known that necessary condition for this Jacobi equality

t t
aq) 1 n
= = : . (5.2)
ot 0P, .. 9Py
oty at,

is equal to some non zero constant M. Denote by Q,(:) minors, which are complements to 1-th

array and k-th column. Evidently, Q,((t) are polynomials. Expanding the determinant (5.2) along

the first column, we get, that
" OP(t
)y op(t) )Qk(t) = M.
i1 Ot

That is, the polynomials 92 5, (k =1,...,n) generate ideal, which coincides with the whole space

of polynomials on C". Thus gp do not have common zeros. So we get the next proposition.

Proposition 5.4. If there is polynomial automorphism from C*=1 in ker P, then polynomials ag_t(kt)’
(k=1,...,n) do not have common zeros.

Is it true vice versa? This question is related to the well-known Jacobi problem which remains
open since 1939.
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Moxuposcska 3.1°. ineprukmniani omeparopu xommnosutil. MXypnaa Ipurxapnamcokozo yrieepcumemy
imeni Bacuas Cmeganuxa, 2 (4) (2015), 75-92.

B miit crarTi MicTHTBCS 0Ty Teopil TINEPHIUKIIYHAX ONMEPATOPIB KOMITO3HIIil, 30KPeEMa, MPeICTaBIEHO
HOBI KJIACH TiNEPIUK/IIYHUX ONEPATOPIB KOMIIO3UIIT Ha TPOCTOPAX aHAITHYHUX (DYHKITI.

Kuo4osi ciosa: rineprukiiivni oneparopu, (pyHKIIOHAIbHI TPOCTOPH, HOJIiHOMIaBHI aBTOMOPdhi3MHE,
cuMeTpraHi QyHKIIT.
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THE FOURTH ORDER MIXED PERIODIC RECURRENCE
FRACTIONS

AV. Semenchuk, R.A. Zato rsky

Abstract. Offered economical algorithm for calculation of rational shortenings of the
fourth-order mixed periodic recurrence fraction.

Keywords: parafunctions of triangular matrices, recurrence fractions, algebraic equations.

1 Introduction

The author got his idea of recurrence fractions in the year 2002 in [1], where continued frac-
tions are written in terms of parapermanents of triangular matrices, i.e. the second-order re-
currence fractions. The third-order recurrence fractions were studied by the author and his
postgraduate student Semenchuk AV. in [2],[3],[4]. This study is a natural continuation of [5];
that is why, in the present paper, we use references to the theorems and formulas of the latter.
Given that, we shall denote the numbers of the formulas and theorems from [5] with a stroke.
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2. THE FOURTH-ORDER MIXED PERIODIC RECURRENCE FRACTIONS

Definition 2.1. The 4-th order recurrence fraction

90
P1| %
9 |7
P s
R
S3 | P3¢
AEERS
R
L
0 0000..(4;2_3
Pi_
010 0 0 0 ql{;qz*—z
rl*—lpl*fl*
N = 00 0 O O'”Pl*?l ‘11*;1 ql:l , (2.1)
S. I P
010 0 0 0 ! ’;g* ”r”lel
010 0 0 0 .
0/0000...0 0 0 0...g53
0/]000O0...0 0 O 0...%%_2
k=1 Pr—1
0/l0000...0 0 0 O0.. = q%lq,;l
0/0000...0 0 0 0.. Gt Z_{‘ ”r’_lef
0/0000...0 0 0 0... 0 3 T g

is called the 4-th order mixed k-periodic recurrence fraction with the preperiod of I.

We shall study the fourth-order 5-periodic recurrence fractions with the preperiod of 5. In
case of the 4-th order k-periodic recurrence fractions with the preperiod of /, all the considera-
tions and relevant algorithms are similar.
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For I = 5and k = 5, the fourth-order mixed periodic recurrence fraction is written as

— * -

90
P1 *
n
i Py g
e ®
205 B g
Tl og B
0 Bo0L B
Tnn
S N P
0 0 0 3 non Z?
s s P8
clo oo b ®
0 0o 0 0 0 3 5_3 % Z;L
0 0o 0 0 0 0 2 BB Z?
TSR 4|
0O 0 0 0 0 0 0 Z 5 o Mm
L -
where q;-‘ p;-‘, r¥, sf‘ gi, pi, i and s; are positive.
We shall decompose the numerator of the rational shortening m”“’ of this fraction by the

elements of the inscribed rectangular matrix T(6), and the denominator — by the elements of
the table T(5). We shall obtain

[90)nts _ [q0]5(q1[q2]n—1 + p2[qaln—2 + 3[q4]u—3 + 54[95]n—a)+
[97lnva [a7lalqalgalu— + p2lgsln—2 + 73(qa]n—3 + s4[g5]n—a)+

+[95)a(p1(g2ln—1 + r2[q5ln—2 + s3(q4]u—3) + [45]3(r1(92]n—1 + 52[95)n—2) + [45]251(92]n—1
+197la(p1(g2ln-1 + r2[q5]n—2 + 83[q4]n—3) + [q7]a(r1[g2]n—1 + s2[q5]n—2) + [47]151[92)n—1"

In the numerator and denominator, the expression in the first brackets is decomposition of
the parapermanent [g1], by the elements of the first column, so the last fraction is written as

[90)s[q1]n + [q0]a(p1lg2ln—1 + r2[ga]n—2 + s5[q4]n—3)+
[9ilalg1]n + [a97]5(p1192ln—1 + 72(g5]n—2 + $53[q4]—3) +

+195]3(r1192]n—1 + 520g5]n—2) + [q5]251[92] 1
+1g7l2(r1(g2]n-1 + 82(g3]n—2) + [g{]151[g2)n—1"

or after grouping corresponding summands, it is written as
[95]s[q1]n + ([q5)ap1 + [g5]5m1 + [g8]251) [92)n—1 + ([95]ar2 + [95]352) [95)n—2 + [g5]a83
[91]alg1]n + ([g7]5p1 + [af]2r1 + [g7]151) [92)u—1 + ([97]572 + [97]252) [3]n—2 + [g7]585

We shall divide the numerator and denominator of the last fraction by [g4],—3 and obtain the
fraction

515t PR + (o + [gslor + [nglosn) [ 2y

n—2 [44ln-3 q3ln—2 [44ln-3

e s+ il = o = oo e
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+([g5ar2 + [g8]352) 122 + (g5 as3

q4ln—3

+([gt]ar2 + [g7]252) 122 + [g7]583

q4|ln—3

Let us have the following limits

lim [q(}k]n+4 _ x*’ lim [ql]n
n—oo [ql]n+3 n—oo [qz]n_l

Then the last expression is written as

921 _ o 43ln—2

=x, li :
15500 3] n—2 12300 (g4l 3

« _ laglsxyz + ([golap1 + [q0]ar1 + [q6]251)yz + ([5]ar2 + [g5]352)7 + [45]4s3
[97]axyz + ([q1]sp1 + [g7]2r1 + [97]151)yz + ([47 1572 + [47]252)z + [g7]as5”
where x, y, z are solutions of simultaneous equations

(x=q+ 5+ 3+
y_q2+P3+ 7’4 +zSuSv’
z=gs+ B 41 s 7 (2.2)
p 7’
u=qa+ 5+ k25
o=+ 5+ 3+
for the 5-periodic recurrence fraction
- ?71 -

2

2| n

I I i)

L%

54| s P4

7O 7 TR , (2.3)

Ooﬂr_lﬂql

where

(see [5], p-2 on page 13).
Thus, the theorem is true.

Theorem 2.2. Let [ =5, k =5, and q;-‘, p;-‘, r;‘, s;-‘, gi, i, ti, Si > 0, and the limits

=x, lim 92l _ , lim galu—2 _ z.

n—oo [q3]7l—2 n—oo [q4]7l—3

[q(ﬂn+4 %

=x*, lim 9]

n—oo [qz]n_l

lim —
=[] 43

Then

o+ = ao)sxyz+ ([q0]apr + (45151 + [g51251)yz + ([g0)ar2 + [g8]s52)2 + [45]455
[97]axyz + ([g7]sp1 + [97]or1 + [g1]151)yz + ([97]572 + [g1]252)2 + [g7]385°

where x, y, z are solutions of the simultaneous equations (2.2) for the 5-periodic recurrence fraction (2.3).
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Example 2.3. Let
G =341 =20 =345 =2,q1 =3,p1 =41 =3,
ps=4,p1 =31 =2,1r5=571r;=2,55=1,s;=1,
n=lLp=Lrn=Lss=1p=1Lps=Lrn=1ss=1,q3=2,p4 =2,
rs = 2,51 = 2,q4 = 1,p5 = 1,1’1 = 1,52 = 1,q5 = 2,p1 = 2,1’2 = 2,53 = 2,
then the mixed recurrence fraction is written as

O O O O ONPEROLIL N
O O O O INWINNI W
O O O NN N

O ORI W

OO O O O OUlEWINI
O Y

NI NI N[ =

=N N
= =
N

_. PERERY PERERY PERERY PERERY PERERY PERERY PERERY PERERY PERERY 1 s

The value of the mixed periodic recurrence fraction converges to the number
«  960xyz + 337yz + 317z + 276
~ 125xyz + 75yz + 71z + 62

where x is the root of the equation modulo maximum

9x4—9x3—9x2—8x—1620,

4

such that
1 1 11 33 109
x=-+= —— 4204+ |——20+ % |~ 1.969558741906025,
4 2 8 8 [_11 4o
3 (4
where
1(55 1 23
o= 224 1Y/ 2007 4 14ave22 - - ,
2\24 9 Y/ —2007 + 144+/622
and
B 4—x
Y= 38 —3x2 —3x—4
4 —x
z= )
3x%y — 3xy —4y +x — 4
Thus,

x* = 4.47989948650800763333.

Let us find rational shortenings of this fraction; we shall get

10 41 138 560 897
51 > 5/ 52 9 4/ 56/ 53 31 7 5 7 54 125 7 8/ 55 200 7 85/
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86 = % ~ 4,479798, 67 = % ~ 4,47922,65 = % ~ 4,47997,69 = % ~ 4,47996,
S10 = % ~ 4,479889, 61 = 12155886500 ~ 4,4798917, 61y = 3;16120619 ~ 4,479902,
13 = fzgzig ~ 4,4799001, 614 = 29367% ~ 4,47989915, 615 = 3886623450%1 ~ 4,47989931,
16 = % ~ 4,47989954, 617 = % ~ 4,47989950003,
15 = 7492598599335442 ~ 4,4798994802.

3. ALGORITHM FOR CALCULATION OF RATIONAL SHORTENINGS OF THE FOURTH-ORDER
MIXED PERIODIC RECURRENCE FRACTION

Let us construct the algorithm for calculation of rational shortenings of the fourth-order
mixed periodic recurrence fractions, which is much more practical than the algorithm described
in the previous section.

Let 11 be the order of the parameter of its rational shortening, and n =sk+1, s =1,2,3,....
Then the following theorem is true.

Theorem 3.1. The rational shortening
_ B
o

of the fourth-order mixed periodic recurrence fraction (2.1), with the period of k > 2, equals the value of
the expression

O

B C D
q§+pi‘~z+r§‘~z+s§~z,

where A, B, C and D are defined by the recurrence equalities

A = s3a;_1D5 + (samg—0 + rag—1)C3 L, + (s100—5 + rioy—n + prag—1) By + AL, (3.1)
B = s3B1_oD5 1 + (s2B1—3 + raPr1—o)Ci L, 4 ( + B! A, (32
oDy s+ (s2B1-3 +12B1—2)Cis_y + (51B1—4 +11B1—3 + p1Bi—2) By, 1 + Bi—14},, (B2)

C =s3m-3D{ 1 + (52714 + 1a11-3)Cily 4+ (31715 + 1171—a + P171-3) By + 71-2A%,, (3.3)

D = sam_aD{ 7Y + (sam1—5 + rami—a)Ci oy + (s1771—6 + 1= + p1i1—a) By + s Al (34)
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where
. -
N
P2 *
5 P2
3 P g4
poa 0
S5 Ty Py .
nonon N
0 3 sz P g5+
rE E3 *
o= . ° B % , , (3.5)
O 0 0 0 o0 q]_4
Pia *
O 0 0 0 o0 -
qbz ql*—2
"_ Pr_1 *
O 0 0 0 o0 e
P1¥1 ‘11;1 ql:l
5 T L *
I O 0 0 0 o0 ” 7 0 a
. -
12
P3 *
@ 13
LoPL gk
nog N
55 s s .
norsoa P
0 2 = Loy
_ 76 p6 ‘]6 q6 36
ﬁl—l_ . . ’ ()
O 0 0 0 o0 qi_s
Pia *
O 0 0 0 o0 -
qbz ql*—2
_ Pi1 *
O 0 0 0 o0 L1 7
P1¥1 ‘11;1 ql:l
5 T i *
|00 000 A T
_ -
13
Py *
@ q4
s Ps o x
noa b
S s Pe .
worog T
_ Pz 47 a7 (37)
Yi—2 = : . 4 :
O 0 0 0 o qi_s
Pia *
O 0 0 0 o -
qkz ql*—2
"_ Pr-a *
O 0 0 0 o s
P1¥1 ‘11;1 ql:l
5 T Pr *
I O 0 0 0 o ” o T qa |
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— * -

14

Ps %

i T

e  Po g%
g T

S5  F

= % oog

Se T
O—i—ip—fqg*

mes=| . ©° " ® , , (3.8)
0 0 0 0 O 97 s
Pi2 *
0 0 0 0 O i i
1 P *
00 0 0 0 i i
5. P *
000 00 A A

and A3, B:k__ll, C:k__lz, Dzk__l3 are respectively defined by the recurrences (9°), (10), (11°), (12°). If
k=2,3,4, webelieve { co=Tco=Y<0=¢<0=0, ¢o = o = To = Co = 1. Likewise, if | = 2,3,4, we

consider a .o = Bo = V<0 =1<0=0, ag=Po=7 =10 =1.

Proof. For the fraction (2.1), the parapermanents P}, and QY are written as

e _
P11 *
g 11
P %
o T2
53 I3 P3 %
no o D
S4 T4 Pa %
O % e m
0000 0..q/,
Pr_
0000 0.4,
1 Pl
59%200000...}??*11@(47:1 @9
S AL
00000..3 7 ?I*le
1 11 A1
00000...0 F 1 HBg
00000O0...0 0 0 00O0...g5.3
Pr—2
00 0 0 0...0 0 0 OO...%jqpijlz
00 0 0 0...0 0 0O 0 0.. Pk;l‘ll;;lql;;
00 0 0 0...0 0 0O 0 0.. e 5_{‘ %le(
00 0 0 0...0 0 0O 00... 0 o Eq_lql
_OOOOO O 0 0 00 0 0 0 0 0...g¢
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_qi _
P2 _x
7 92
3P g
o T
Sp Ty Py
F
0 5 5P
mopoa

0000 0..q04

Pr_
00 00O0O.. qliqu*_z

1 Pl o«

Q:kzooooo.. o qiglql;l

R T

00000..4 7 ?”*le
51 AT ')
00000...0 3+ 7 Hg
0000O0...0 0 0 00..gi_3
00000O0...0 0 0 00O0.. Z’k‘::qk_z
k-1 Pk—1

000O0O0...0 0O 0 0°O.. pkflqkqu’;;l
00000...0 0 0 00... 3 B %Z’f
00000...0 0 0 00...0 X 1 Bg
' 00000...0 0 0 00...0 0 0 00...g]

We shall denote the parapermanent, derived from the parapermanent (3.9) as a result of delet-
ing the first column, by A, the parapermanent, derived as a result of deleting the first two
columns, — by B, the parapermanent, derived as a result of deleting the first three columns, —
by C, and the parapermanent, derived as a result of deleting the first four columns, — by D.
Then, decomposing the first parapermanent by the elements of the first column, we shall get
the equality P}, = gjA + piB + r3C + s3D, which, by taking the equality QY = A into account,
will lead to the equality &% = g5 + pi 5 + 3% +s30.

We shall denote the parapermanent, derived from the parapermanent (3.9) as a result of delet-
ing the first (/4-1) columns, by A%, (it contains s periods of the fraction). The parapermanent,

derived from the parapermanent A}, as a result of deleting the first column, is denoted by sz_—lr
The parapermanent, derived from the parapermanent A7, as a result of deleting the first two

columns, is denoted by Cgk__lz, and the parapermanent, derived from the parapermanent A7, as

a result of deleting the first three columns, — by Djk__l3. We shall decompose the parapermanent
A by the elements of the inscribed rectangular matrix T(I + 1). Taking (3.5) into account and
applying the theorem on incomplete decomposition of a parapermanent by the elements of the
(I 4+ 1)-th column, we obtain the equality (3.1). We shall make similar transformations with the
parapermanent B. We decompose it by the elements of the table T(!), taking (3.6) into account,
at that we get the equality (3.2). We shall also make similar transformations with the paraper-
manents C, D. We decompose them by the elements of the tables T(I — 1), T(I — 2) respectively
and take (3.7), (3.8) into account. At that, we get the equalities (3.3), (3.4).
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We shall decompose the parapermanent A7, by the elements of the inscribed rectangular table
T(k+ 1), then we get the recurrence (9’). Likewise, we shall deal with the parapermanents
B, o1 and D% ',, decomposing them by the elements of the tables T(k), T(k — 1) and
T(k — 2) respectively. At that, we get the recurrences (10%), (11%), (127). O
Example 3.2. Let us have the fourth-order mixed 5-periodic recurrence fraction from Example
2.3.

Let us find its rational shortenings applying Theorem 3.1.

We shall find

N—2,1-1,10, 11, Y=1, Y0, Y1, Y2, Bo, B1, B2, B3, 01, &2, &3, k4,

¢—-1,60,C1, G2, T0, T1, T2, T3, Y1, Y2, Y3, Pa, P2, 93, P2, P5
from the equalities (3.5), (3.6), (3.7), (3.8), (13'), (14'), (15), (16"):

2
17—2 20117—1 201170 :11171 :3/,)/—1 :O/,YO :1/,)/1 :2/,)/2 - |: 3 3:| :9/
3
3 3
po=1, Pp1=3 Pa=|3 ,|=10, Bs= |3 2 =41,
> 2 5 3
5 5 3
3 3
2 :

_ _ |2 _ _ |3 _ _ |33 _
Dcl—z,wz—{é 3}—9,063— 5 3 =31, a4 = 5.4 5 = 125,
3 > 4 o ﬁll 3
i 2 12 3 4

2 3 3

6—1:0/ 60:1/ 61:1/ 62:{

= e

N|—= =

=INRIND NN

=1 m =2, Tzz{

=N N

1 1
1 =1, 4]2:{1 2}:3, 3 = %2 — 6,
2 124
2 1
1
1 5 1 }
ll]4: i 2 1 :11, @2:{1 1}:2’ @3: ? 1 :6,
) 1 119
3112 T 2
1
1 1
19 ¥1
11 2
i i 2 1 1 2 ] 1
s 031372

Thus, the recurrences (3.1), (3.2), (3.3), (3.4), (9°), (107), (11"), (12”) will be written respectively
as
A =62D¢ 1, + 71CE1, + 75B5 Y + 12548,
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B =20Dg ', +23C5 ", +25B5 1, + 41A%,,
C=4Di L, +5C5 1, + 5B ! +94%,,
D =2D¢ Y + 208t + 2B 7L + 3A%,,
Al = 24D;;_28 +30C52, + 34B3 7% +35A5 Y,
Bi !, = 12D5 % + 15CS 2, + 17B5 % + 18A5 L,
Cso = 8D;;38 +10C52, + 12852 + 12457,
Dl = 2D8T % +3CET%, + 3B % +3A L.

s-th convergence to the value of the given recurrence fraction by the algorithm of Theorem 3.1
is written as

B C D
75—3+4A+2A+Z
Since
=5 =3 Cl=1=12, B)=y,=18 Al=ps=235,
then
59699 3863501 1780047
— OO0 4479889, y = oo OUT 4 47989931, 5 = — '~ 270446179,
M = 13326 12 = "g62408 3 = 658189
98034217 5399131407
_ 2O 0 70446180035, 75 = D222 20 5 70446180029286,
T4 7 36249057 75 = 1996379245
297351484441
_ ~ 2.704461800292654.
76 = 109948487499 0446180029265

Thus, s-th convergence v,, found with the help of the algorithm of Theorem 3.1 coincides
with the (5s + I)—th convergence ds ;, found with the help of established recurrences.
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LINEAR SUBSPACES IN ZEROS OF POLYNOMIALS ON BANACH
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Abstract. A survey of general results about linear subspaces in zeros of polynomials on
real and complex Banach spaces.
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1. Introduction

The paper is a survey of results related to linear subspaces in zero-sets (kernels) of real and
complex polynomials on Banach spaces.

The study of the zeros of polynomials has a long history, which began with the results ob-
tained in algebraic geometry and complex analysis. Zeros of polynomials on infinite demen-
sional Banach spaces was studied in [1], [2], [3], [4], [5], [7], [12], [13], [18] by R. Aron, C. Boyd,
R. Ryan, I. Zalduendo, D. Garsia, M. Maestre, A. Zagorodnyuk, A. Plichko, R. Gonzalo, J. Ferrer,
P. Hajek and others.

Let X and Y be real or complex Banach vector spaces. For every positive integer numbers
n,m e N let Xnymwill denote the Cartesian product of n copies of X and m copies of Y, and
xnymwill denote the element (x,..., x,Y,..., y) from X nym.

For n e N we denote by L (nX, Y) the vector space of all continuous n-linear mappings F
from X to Y endowed with the norm of uniform convergence on the unit ball of X n. An n-linear
mapping F is called symmetric if

F(XL,...,Xn) = F (xs(2),...,xs(yJ, se Sn,

where S nmeans all permutations
s:{1,....n} — y{s(1),...,s(n)}.
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The subspace in L("X,Y) of all continuous symmetric n-linear maps will be denoted by
Ls("X,Y). Clearly, L("X,Y) and Ls("X,Y) are Banach spaces. Further we will not write the
index n = 1. In particular, £(X) denotes the algebra of all continuous linear operators and
L(X,C) := X’ denotes the dual space of X.

Definition 1. Let us denote by A, the natural embeddings called diagonal mappings from X to
X" defined as
Ay X — X!
x — (x,...,x).
A mapping P from X to Y is called a continuous n-homogeneous polynomial if
P(x) = (FoAy,)(x) forsome Fe L("X,Y). (1.1)

Let P("X,Y) denote the vector space of all continuous n-homogeneous polynomials endowed
with the norm of uniform convergence on the unit ball B of X, i.e,,

|P|| = sup [|P(x)]]
x€B

with P € P("X,Y).

In the paper we consider cases Y = R or Y = C the fields of real or complex numbers. We
use notation P(X) and P("X) for the space of scalar valued polynomials and n-homogeneous
scalar valued polynomials respectively.

Let us denote by P the unique symmetric n-linear map F which satisfies 1.1 for a given P €
P("X).

For detales on polynomials on Banach spaces we refer the reader to [9], [10], [17].

2. LINEAR SUBSPACES IN ZEROS OF COMPLEX POLYNOMIALS

If X is an arbitrary complex vector space (not necessarily normed), we define a n-homogeneous
complex polynomial by the formula
P(x) = (FoAy) (x) x e X,

where F is a complex n-linear (not necessarily continuous) functional on X.

It is clear that the kernel (i.e. the set of zeros) of an n-homogeneous complex polynomial P
on X, where n > 0 and dim X > 1, consists of one-dimensional subspaces. In [18] A. Plichko
and A. Zagorodnyuk showed that one-dimensional subspaces consists of infinite-dimensional
subspaces if dim X = oo.

Theorem 2.1. ([18]) Let X be an infinite-dimensional complex vector space and P is a complex n-
homogeneous polynomial on X. Then there exists an infinite-dimensional subspace X such that

Xo C ker P.

Lemma 1. Let Theorem 2.1 be proved for every homogeneous polynomial of degree < n. Then for
arbitrary homogeneous polynomials Py, - - - , Py of degree < n there exists a subspace

Xo C kerPyN...Nker Py,
such that dim Xy = oo.
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Proof. Let X1 C ker P; with dim X7 = oo. Then there exists a subspace Xo C Xj Nker P, such
that dim X, = co. Continuing this process, we get the subspace

Xo=Xu C Xpy1C - CXq
with Xg C ker Py N - - - Nker P, and dim Xy = 0. O

Proof of Theorem 2.1. We will construct Xy using the induction on 7. Evidently that the theorem
is true for linear functionals. Suppose that it is true for homogeneous polynomials of degree
< n.

Let x;1 € X is chosen such that P(x1) # 0 (if such x1 does not exist then the assertion of
theorems is true automatically). By the induction hypothesis and by Lemma 1 there exists a
subspace X1 C X with dim Xj = oo, on which each of the homogeneous polynomials

Py (x) =P (xl,x”_l> ,

5 (02 =2
Px%(x) = (xl,x” ),

vanish for all x € Xj, where P is the symmetric n-linear functional associated with the n-
homogeneous polynomial P.

On second step we choose an element x, € X1 such that P(x,) # 0 (if x, does not exist then
X1 C ker P and the theorem is proved at once). By the induction hypothesis and by Lemma 1
there exists a subspace X» C X7 with dim X, = oo on which each homogeneous polynomials

szlc,xlz(x) =P (x’l‘, xlz,x”_k_l> , 0<k+l<n
vanish for all x € X5.

We continue this process in the way written above. If it finishes on the i-th step (i.e. P(X;) =
0), then the theorem is proved. If it does not finish then we will get an infinite sequence (x;)
consisting of linearly independent terms such that P(x;) # 0 for every i € N and

< (k1 .k k;
P (xf,xf,...,x;) =0

if 0 < k; < n at least for one k;.
Consequently, it follows that for any finite sequence of scalars (a;),

P(Zi:am) = lzagﬂp(xi).

Puty; = x;/P(x;) for all i € N. Then P vanishes on the linear span of elements

vi+V—=1ys, y3+V—1ys, ys+V—1ys, ... .

The theorem is proved. O
In [18] it was proved the following:

Corollary 1. For every polynomial functional P on a complex infinite dimensional vector space, for
which P(0) = 0, there exists an infinite dimensional linear subspace X such that Xo C ker P.

Corollary 2. If P is a polynomial functional on a complex infinite dimensional vector space and P(xg) =
0, then there exists an infinite dimensional affine subspace Xo C ker P with xo € Xo.
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In [19] it was proved next corollary:

Corollary 3. There is a function ® : Ny x Ng — No, ®(m, d) = n with the following property.
For every complex polynomial P : C" — C of degree d, there is a subspace X C C" dimension m such
that P|x = P(0).

The real analogue of this result is obviously false, as can be seen by considering P(x) = }_ x]Z.
Despite this, a number of positive results hold. For example, one can show:

Theorem 2.2. There is a function 6 : Ng — Ny, 0(m) = n with the following property:
For every real polynomial P : R" — R which is homogeneous of degree 3, there is a subspace X C R”
of dimension m such that P|x = 0.

Theorem 2.3. If a real infinite dimensional Banach space E does not admit a 2-homogeneous positive
definite polynomial, then every 2-homogeneous polynomial P : E — R is identically O on an infinite
dimensional subspace of E.

3. NONSEPARABLE ZERO SUBSPACES

3.1. NONSEPARABLE SUBSPACES IN ker P C I«

All results of this subsection was proved in [11] by M. Fernandez-Unzueta. In particular in
[11] was proved that every complex polynomial P defined on I such that P(0) = 0 necessarily
vanishes on a non-separable subspace. In the real case, it was shown that if P vanishes on a
copy of ¢y, then it vanishes as well on a non-separable subspace.

Theorem 3.1. Consider the Banach space l« (real or complex) and a subspace G C Il isomorphic to co.
Then, there exists a non-countable collection of vectors (Xu)wes C loo satisfying the following condition:
For every {P;}° 1 C P(leo) such that G C (2, ker P, there exists a subset of indices T C A with
AN\T at most countable such that the subspace

Fr := Span{x,;a € T}
is non-separable and contained in ;> 1 ker P;.

Lemma 2. It is enough to prove Theorem 3.1 for the case where the collection of polynomials {P;} C
P("ls) reduces to a single homogeneous polynomial P € P ("l).

Proof of Theorem 3.1. By Lemma 2 it is enough to consider the case of a single homogeneous
polynomial P. The proof will be done by induction on #, the degree of the polynomial. At
each inductive step n we will, however, assume that the result holds for a countable family
of polynomials of degree strictly less than n. The case n = 1 asserts that for a fixed linear
functional x* € I such that x*|,, = 0, there exists I' C A, a subset of indices with countable
complement in A, such that x*(x,) =0if y € T.

We assume now that Theorem 3.1 holds for polynomials of degree k < n.

Let P € P("ls) be such that ¢y C ker P and let (e;); be the canonical basis of ¢y. Consider the
countable family of polynomials P;, ; C P("¥ls) defined as follows:

n—k
Py, i (x):=Pley,...,e,x,  ,x)forx€leo, 1<k<nandijeN. (3.1)
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Every polynomial in this countable collection has degree strictly less than n and satisfies
co C ker P, ;. The induction hypothesis allows us to choose some set of indices

I CA (3.2)

in such a way that A O T'y is countable and Fr, = Span{x.; € I'1} is a non-separable subspace
contained in ( ker P;,_; . A main step in the proof is the fact that the following set:

S ={y €Ty, thereare ay, ..., a, € ' with |15(x7®x[x2 @ ...Dxq,)| # 0}

is countable, accoding to Lemma 4 (see below).

Assuming this, to finish the proof of Theorem 3.1, consider the non-countable set of indices
obtained by removing from the set I'; defined in (3.2), every index appearing in the countable
set S : 'y = T'1\S. Since S is countable, A\TI'; is a countable set. Besides, whenever 7, € T
for 1 < k < n, we have that P(x,, © ... @ x,,). In particular if v € T, then x, € kerP. Let
us finally check that not only these elements, but the subspace generated by them, Fr,, satisfies
Fr, CkerP. Lety1,...,7 € I'; and Aq, ... A € C. We obtain the result for the elements in the
linear span of {x,,v € I'>} from the following computation:

P(A1Xq, 4 ..o+ Agxq,) = Y Miyoe Ay Py @@y, ) =0,
ih=1,...,k
inzl,...,k

The result for the closure Fr, of the linear span is obtained just from the continuity of P.
O

Lemma 3. Let k,n € N, and let {e;,i € N} be the set of coordinate vectors in le. For any indices
il e N,j=1,...,k, m=2,...,n, theset

{ei}®ei];®...®ei?;1§j§k} (33)

n
defines a basis isometrically equivalent to the canonical basis of IX, in lo© . O rleo.

Lemma 4. Consider I'1 the subset of A defined in (3.2). Then, the set
S = {Ty; therearexy, ..., 0y € Tq with P(xy @ Xy @ ... @ Xy,) 70}
is at most countable.

Corollary 4. If F C I« is separable and co C F, then F is not the intersection of any denumerable family
of sets of zeroes of scalar-valued polynomials.

The following theorem is an important consequence of Theorem 3.1. It asserts the existence
of non-separable subspaces in the set of zeroes of every polynomial P on the complex /. space,
such that P(0) = 0.

Theorem 3.2. Let E be a complex Banach space containing lo and P € P(E) be such that P(0) = 0.
Then, there exists a non-separable subspace F C ker P.

For a fixed Banach space E, n € N, and a polynomial P € P("E) with P(0) = 0 we say
that the subspace F C E is maximal among the subspaces contained in ker P (or just maximal if the
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context is clear) if F C ker P and whenever G C E is any subspace satisfying F C G C ker P,
then necessarily F = G.

The following proposition describes an arbitrary maximal subspace for a homogeneous poly-
nomial P as the intersection of the sets of zeroes of a finite number of polynomials (generally
non-scalar). This result is particularly interesting for our purposes if the maximal subspace is
separable.

Proposition 1. Let E be a Banach space (real or complex), n € N, P € P("E) and F C E a subspace
such that F C ker P. Then F is maximal among the subspaces contained in ker P if and only 1f

F = () ker Q, (3.4)
k=1
where Qi € P(*E, P("~KF)) is defined for every x € E and every y € F as
k n—k

Q)W) =P(x, _,xy, . ),
where 1 < k < n.

Proof. Assume first that F is a maximal subspace, and consider any x € F. By hypothesis
Qu(x) = P(x) = 0. For1 < k < n—1 we have Qi(x) = 0 if and only if for every y € F,

Qi(x)(y) = 0. The condition P|r = 0 is equivalent to P| = 0. Thus for every y €
Fx x F

. k n—k
F, Q«(x)(y) =P(x, _,x,y, _ ,y)=0.Thisimplies that x € ker Q; and the contention C

in (3.4) is proved.

Observe that this proof does not make use of the maximality of F. However, to show the
reverse inclusion this assumption is essential: Consider x € (}_; ker Qy any scalar and y € F.
Then

P(Ax+y) = A"P +ZA"< ) p YY)

= A"P )+ Z A < > (x)(y) = 0. (3.5)

Since F C [x] + F C ker P and F is maximal, necessarlly x €F.

Assume now that F C ker P can be expressed as in (3.3). Let us prove that F is maximal.
Consider x € ker P such that P(Ax + y) = 0 for every scalar A and every y € F. Equation (3.5)
still holds and says that for every fixed y € F we have a polynomial on A € K identically zero.
Thus, every coefficient is zero. In this way it is proved that x € ker Qx fork = 1,...,n. From
expression (3.3) we get that x € F and consequently that F is maximal. O

Corollary 5. If F C I« is separable and co C F, then F is not maximal for any P € P("l).

Observe that the description of a maximal separable subspace just given leads also to a proof
of Theorem 3.2: As argued before, every complex polynomial with P(0) = 0 must be zero on a
copy of ¢p. This copy of ¢y is contained in a maximal subspace F C ker P which, by Corollary 5,
is necessarily non-separable.
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3.2. ZERO SUBSPACES OF POLYNOMIALS ON [1(I)

All results of this subsection was proved in [6].

The examples that we construct are defined on spaces I1(I'). Over this space, all polynomials
can be explicitly described. For instance, the general form of a quadratic functional P : [1(T') —
Cis

P(x) = ) AupXaxp, x= (xy)qer € h(T),
a, el
where (/\a/;)a,/;g is a bounded family of complex scalars. Indeed in all our examples the coeffi-
cients A are either 0 or 1, they functionals of the form

P(x)= Y XoXg,
{x,peG}
where G a certain set of couples of elements of I'. On the other hand, we state the following
elementary basic fact about polynomials that we shall explicitly use at some point.

Proposition 2. Let P : X — Y be a homogeneous polynomial of degree n and norm K. Then
[1P(x) = P(y)[] < nKM"~H|x[]||yl]
for every x,y € X.

Let Q) be a set and .4 be an almost disjoint family of subsets of Q) (that is, |[A N A’| < |Q]
whenever A, A’ € A are different), and let B = Q U A. We consider the following quadratic
functional P : I1(B) — C given by

P(x) =) {xuxa:neQ, AcAnecA}
Theorem 3.3. The space X = 11(Q}) C I1(B) is maximal zero subspace for the polynomial P.

Proof. The only point which requires explanation is that X is indeed maximal. So assume by
contradiction that there is a vector y out of X such that Y = span(X U {y}) is a zero subspace
for P. Without loss of generality, we suppose that y is supported in .A. Pick A € A such that
lyal = max{|yp| : B € A} and F C A a finite subset of A such that } zc 4\ 7 lys| < Slyal-
Now, because A is an almost disjoint family of subsets of €}, it is possible to find n € ) such
thatn € Abutn ¢ B whenever B € F \ {A}. Consider the element y + 1, € Y. We claim that
P(y + 1) # 0 getting thus a contradiction

Ply+1,) =Y yp=yat Y, 5
neB neB,Be A\ F

The second term of the sum has modulus less than § the modulus of the first term. So P(y +
1,) #0. O

We are interested in the case when | A| > |Q)|. The subspace I1(.A) is a zero subspace for
P. It may not be maximal but this does not matter because, by a Zorn’s lemma argument, it is
contained in some maximal zero subspace. This fact together with Theorem 3.3 shows that P
has maximal zero subspaces of both densities |(}| and |.A|.

There are two standard constructions of big almost disjoin families. One is by induction, and
it shows that for every cardinal ¥ we can find an almost disjoint family of cardinality x* on
a set of cardinality k. The other one is by considering the branches of the tree k<%, and this
indicates that for every cardinal ¥ we can find an almost disjoint family of cardinality x“(one
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construction or the other provides a better result depending on whether k¥ = x, ¥“ =" or
k¥ > xkt. Hence,

Corollary 6. Let k be an infinite cardinal and T = max(x", x%). There exists a quadratic functional
on I1(T) with a maximal zero subspace of density x and another maximal zero subspace of density T.

Corollary 7. There exists a quadratic functional on l1(¢) with a separable maximal zero subspace and a
maximal zero subspace of density c.

We denote by [A]? the set of all unordered pairs of elements of A
[A]? ={tC A:|t| =2}.
We consider an ordinal « to be equal to the set of all ordinals less than «,so
w1 ={a:x<wi}

is the set of countable ordinals, and also for a nonnegative integern € N, n = {0,1,...,n — 1}.
We introduce some notations for subsets of a well ordered set I'. If a C I' is a set of cardinality
n, and k < n we denote by a(k) the (k + 1)-th element of a according to the well order of T, so

that
a={a(0),...,a(n—1)}.
Moreover, fora,b C I', we write a < b if &« < f for every « € a and every p € b.
We recall also that a A-system with root a is a family of sets such that the intersection of every
two different elements of the family equals a. The well-known A-system lemma asserts that
every uncountable family of finite sets has an uncountable subfamily which forms a A-system.

Definition 2. A function f : [[]> — 2 is said to be a partition of the first kind if for every
uncountable family A of disjoint subsets of I' of some fixed finite cardinality n, and for ev-
ery k € n there exist a,b,a’,b' € A such that f(a(k),b(k)) = 1, f(a'(k),b'(k)) = 0 and
f(a(i),b(j)) = f(a'(i), ¥ (j)) whenever (i,j) # (k k). Notice that, passing to a further un-
countable subfamily A, we can choose such 4 < b such that, in addition, f(a(i),a(j)) =
F(@ (i), (7)) = F(b(0), b)) = £/ (), B(j) for all {i,j} € [n]?.

Theorem 3.4. For T' = wy there is a partition f : [[)? — 2 of the first kind.

Theorem 3.5. If f : [[)? — 2 is a partition of the first king and 1f Y is a subspace of I1(T) with
Y C ker Py, then Y is separable.

We shall denote by A, = {(i,i) : i € n} the diagonal of the cartesian product n x #n,
n = {0,1,...,n—1} . Also Bx(x,r) or simply B(x,r) will denote the ball of center x and
radius r in a given Banach space X.

Definition 3. A function f : [I]? — w is said to be a partition of the second kind if for every un-
countable family A of finite subsets of I' all of some fixed cardinality 1, we have the following
two conclusions:

(a) there is an uncountable subfamily B of A and a function i : n? \ A, — w such that
f(a(i),b(j)) = h(i,j) foreveryi #j, i,j<mnandeverya < binB;

(b) for every function /1 : 1 — w there exists a < b in A such that f(a(i), b(i)) = h(i).

Theorem 3.6. For I' = wy there is a partition f : [[)? — 2 of the second kind as well.
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Theorem 3.7. Suppose that f : [w1]* — w is a partition of the second kind and let P = Py : 11(T) — V

be the corresponding polynomial. Let Y be a nonseparable subspace of I1(w1). Then P(Y) has nonempty
interior in V.

3.3. ON THE ZERO-SET OF REAL POLYNOMIALS IN NONSEPARABLE BANACH
SPACES

All results of this subsection was proved in [12].
By Pr("X) we denote the subspace of P("X) formed by those polynomials which can be

m
written as P(x) = Y /\j<u;‘,x>”, with A; € R, u;-‘ € X*,1 < j < m, and they are called finite
=1

type polynomials. The space of approximable polynomials, P4("X), is given by the closure of
Pr("X) in P("X). By Pw("X) we represent the subspace of P("X) formed by those polyno-
mials that are weakly continuous on the bounded subsets of X. A polynomial P € P("X) is a

n

nuclear polynomial whenever it has the form P(x) = ¥ a;(uf,x)", x € X, where (4;)7*, and
=1

(17)74 is a bounded sequence of X*. Denoting by Pn("X) the class of nuclear polynomials, it

is quite clear that
Pr("X) CPn("X) CPaA("X) C Pu("X) C P("X).

In what follows X will be an infinite-dimensional real Banach space and X* its topological
dual. We use the symbol (-, -) to denote the standard duality between X and X*.
If A C Xand B C X*, then we use the notation

At ={xeX:(x*, x)=0x€cA}, B, ={xeX:{x*x)=0 «x*eB.

For a polynomial P € P("X), the following conjugacy relationship between its first and
(n — 1)-th derivatives turned out to be relevant. The first derivative is the mapping P’ : X — X*

such that
, ., (=1
P'(x)=nP(x, _ ,x,-),x€X,

while the (1 — 1)-th derivative is given by the continuous linear map P~V : X — £ (X" 1)
such that

. n—1
P D(x) = n!B(x, -, | ! ), x€eX,

where £s(X"~1) denotes the space of symmetric continuous (n — 1)-linear functionals on X. It
is then straightforward to notice, using the Polarization formula, that

ker PU"=1) = P/(X) .

If Z is such a maximal subspace, then, for x € ker pn=1) ez

n—1 : i
Plx+z) = P(x)+P(z)+), ( 7 > P(x, (]) ,X,Z, (...]) ,Z)
=1
1 n—1 (n—1) n-1 1 n—1 (j-1) (n—j)
= mP( ) )+ j!(n—])'P( (x| xz 2) =0,
j=1
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ie, Z +ker P~ C ker P, and the maximality of Z yields that ker P("~1) is contained in Z.
Hence, if ker P*~1) were non-zero, we would easily obtain a non-zero linear subspace con-

tained in P~1(0). Indeed, we will seek for conditions in order to guarantee that ker P("~1) is
sufficiently big. For this purpose, recall that

(ker D) = (P'(X) )& = T (P'(X),

and so, roughly speaking, the smaller P’(X) is the bigger ker P"*~1) will be. In particular, if
P'(X) were separable, then ( X/ ker P"=1)* = (ker P""~1)L would have to be weak*-separable
and this is mainly the reason why in the next section we shall be dealing with this type of space.

We say that a real Banach space X is in class Cy whenever there exists a one-to-one continu-
ous linear map from X into a Hilbert space. When X € Cy we shall say that X is injected into
a Hilbert space. If X is injected into a separable Hilbert space, then we shall write X € W*.
Clearly, W C Cp. The following properties of the spaces in these two classes are quite straight-
forward.

Proposition 3. The following conditions are equivalent for a space X :
(i) X € W+
(it) X* is weak™-separable.

(ii1) X* has a countable total subset.

Proposition 4. If X is in class Cyy (respectively, in W*) and Y is a space that is injected linearly and
continuously into X, then Y € Cy (respectively, Y € W*). Hence, every closed linear subspace of X is
in the same class that X.

Proposition 5. If X is separable, then X and X* are in W* .

Proposition 6. Let Y be a closed linear subspace of the Banach space X. If Y is in W* and X/Y is in
Cy, then X isin Cy.

Proof. With no loss of generality, we may assume that we have two one- to-one bounded linear
maps
51:Y—>12, Ssz/Y—>l(F0),

with I’y being a set that is disjoint from the set of positive integers N. Now, for each j € N, if ¢
denotes the corresponding unit vector, we have that Sje; € Y*. Let vj € X" be the extension of
Siej to X such that ||v;‘|| = [|S7ej||. Setting T' := N UTy, we define the mapping T : X — [»(T')
such that, for x € X, Tx := (A,),er where

L. 12, reN,
T (Sa(x+Y),ey), el

Then, T is a well defined linear map such that it is bounded. To see that it is one-to-one, let
x € Xbesuch that Tx =0, then, 0 = (So(x+Y),e,), 7 € T, implies that Spy(x +Y) =0, and
so x € Y; hence, from 0 = 2_f<v;f,x>, j € N, it follows that 0 = <Si‘e]~,x> = <e]-,51x>, x €N,
therefore S1x = 0,and x = 0. O
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Corollary 8. Let Y be a closed linear subspace of X such that Y and X /Y are both in WY, then X is also
in W*, i.e., being in W* is a three-space property.

We already know that, if X is separable then X and X* are both in W*, let’s take a look now
at some other examples of spaces not belonging to WW*, which will obviously be non-separable.
Every non-separable weakly compactly generated space, and hence every non-separable reflex-
ive one and ¢o(T), T an uncountable set, has a non-weak*-separable dual. This, plus the fact
that ¢o(T") can be canonically injected into I (T'), yields that, for uncountable T, ¢o(T") and lo(T')
are not in W* and clearly I(T') € CgpW*. The easiest example of a space X such that X € W*
and X* ¢ W* is given by X = l: Being obvious that I« € W?*, we show that [}, & W*: I«
contains a closed subspace F such that I« /F is isomorphic to a non-separable Hilbert space.
Hence, F+ = (l/F)* is a subspace of I}, which is also isomorphic to a non-separable Hilbert
space. If [7, were in class W¥, then, from Proposition 4, there would be a non-separable Hilbert
space in W*, which is clearly contradictory.

There are also examples satisfying the contrary, i.e.,, X ¢ W* and X* € W?*. In particular,
there is one which plays a somewhat outstanding role and we shall take a look at it right now.
Let X = ¢o([0,1]). Then X* = [1([0,1]), and to show that X* is in W¥, since the space of
continuous functions C[0, 1], being separable, is a quotient of /1, and therefore its topological
dual C[0, 1]* is isomorphic to a subspace of L, it suffices to see that /1 ([0, 1]) can be continuously
injected into C[0, 1]*. This is done by noticing that the mapping T : [1([0,1]) — C[0,1]* such
that, if x = (x,) € 11([0,1]), Tx := ¥, ¢(01] X407 Where &, is the Dirac measure at the point
7 € [0, 1], is one-to-one bounded and linear.

Also, since (I /¢o)* admits no countable total subsets, it follows that I« /¢ is not in W*.

Let us to show that, if X ¢ W?, then every sequence of closed linear subspaces (Ej)]?’il such

that X/E; € W*,j > 1, satisfies that (> E; € W™,
j J j=1Ej

Lemma 5. Let E be a closed linear subspace of the Banach space X. Then E*+ is o(X*, X)-separable if
and only 1f there is a sequence (u;‘)‘;"zl in X* such that E = N2 4 ker u.

Proposition 7. Let (E;)*q be a sequence of closed linear subspaces of X such that, for each j, E]-L is
o(X*, X)-separable. Let E := N7, Ej, then:
(i) EL is also o(X*, X)-separable.

(ii) If Xo & W*, then E & W*.
Proof. For each j, from the previous lemma, there is a sequence (u;‘k) C X* such that E; =

Mg keruf. Hence EX = (N¥4E)" = (N%_qkeruf)t = Ww*{u;‘k : i,k > 1} is clearly
o(X, X*)-separable, thus obtaining (i). Besides, this yields X/E € W*, and, if X ¢ W* the
3-space property shown in Corollary 8 guarantees (ii). ]

Proposition 8. If X is a Banach space which is not in class W*, then, if n is any positive integer, for
each P € Py("X), ker PU*=1) is not in W*.

Proof. If P € P,("X), making use of the conjugacy relation mentioned in the first section, we
have

ker PU"=1) = P/(X) .
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From ([10], p. 88, Proposition 2.6), we know that P’ is (weak-to-norm)-uniformly continuous
on the bounded subsets and, since By is weakly precompact, it follows that P/(X) is norm-

separable in X*. Clearly then, lin" (P'(X)) is weak*-separable and so, since
(X/P'(X) )" = (P(X) )t =T (P(X)),
we have that X/P'(X), is in W*. From Corollary 8, since X is not in W¥*, it follows that
ker P"=1) = P/(X) | is not in W*. O
Recalling that ker P("~1) is contained in every maximal linear subspace contained in ker P,
the next result clearly follows.

Corollary 9. If X ¢ W*, then, for every integer n and every P € Py ("X), every maximal linear
subspace Z contained in ker P is such that Z ¢ W*.

The next result gives us another characterization of the spaces in class W*.

Corollary 10. For a Banach space X, the following conditions are equivalent:
(i) X € W+
(ii) For any even integer n, X admits a positive definite polynomial P € Pn("X).
(iii) For any even integer n, X admits a positive definite polynomial P € P, (" X).
(iv) There is an even integer n such that X admits a positive definite polynomial P € Py ("X).

(v) There is an even integer n such that X admits a positive definite polynomial P € Pn("X).

As a by product of this last corollary, the author obtained a stronger version of part (i) in
Theorem 16 of [1].

Corollary 11. Let X be any infinite-dimensional real Banach space. Then, either X admits a positive
definite nuclear polynomial of degree 2, or, for every positive integer n, the zero-set of every P € Py, ("X)
contains a closed linear subspace of X whose dual is not weak*-separable.

The results previously obtained will be used in the following to show that, if X ¢ W, then
every vector-valued polynomial, not necessarily homogeneous, which is weakly continuous
on the bounded subsets of X admits a closed linear subspace not belonging to WW* where the
polynomial is constant.

Lemma 6. If P € Py, ("X), then (ker PU~D)L is o(X*, X)-separable.
Proposition 9. Let (n)%° 1 bea sequence of positive integers and let (P;)3 1 be a sequence of polynomials

such that, for each j, P; € Py ("1 X). If X € W*, then there is a closed linear subspace Z in X such that
ZE&W*and Z C mjzlpj—l(o).

, —1
Proof. For each j, set Z; := ker P].(n] )

o(X* X)-separable, j > 1. Setting Z := N%,Z;, we know from Proposition 7 that Z* is
(X*, X)-separable, and so, since X ¢ W?*, we have that Z ¢ W?*. Now, since it is evident

that ker P].(nj b C ker Pj, j > 1, the result follows. O

. Then, from the previous lemma we have that Z;" is
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For a Banach space Y and a positive integer n, the symbols P("X,Y) and Py ("X,Y) will
denote the spaces of n-homogeneous continuous polynomials on X with values in Y and the
subspace formed by those which are weakly continuous (to say it in a more explicit way, weak-
to-norm continuous) on the bounded subsets of X, respectively. We see next that, when X is
not in class W*, any countable family of polynomials in P, ("X, Y') vanishes simultaneously on
quite a big linear subspace.

Corollary 12. Let X,Y be Banach spaces with X ¢ W*. Let (nj);?‘;l be a sequence of positive integers

and (Pj)324 a sequence of polynomials such that, for each j, P; € Pu("X,Y). Then there is a closed

linear subspace Z in X such that Z ¢ W*and P;|Z =0, j> 1.

Corollary 13. Let P : X — Y be a polynomial, not necessarily homogeneous, which is weakly contin-
uous on the bounded subsets of X. If X ¢& W*, then there is a closed linear subspace Z in X such that
Z & W*and P|; = P(0).

In the results previously given we determine constructively the big linear subspace contained
in the polynomial’s zero-set. Nevertheless, noticing that what we really use is that weak zero-
neighborhoods contain finite-codimensional linear subspaces, there is a natural extension of
these existence results to a larger frame, namely that of the mappings which are weak-to-norm
continuous on the bounded sets. More explicitelly, we have the following generalization.

Corollary 14. Let f : X — Y be a weak-to-norm continuous mapping on the bounded subsets of X
such that f(0) = 0. If X & WY, then there is a closed linear subspace Z in X, with Z ¢ W*, such that
Z C f~10).

Corollary 15. Let ( f]);";l be a sequence of mappings from X into Y which are weak-to-norm continuous
on the bounded subsets of X and such that f;(0) =0, j > 1. Assume that, for all x € X,

flx) = li]mfj(X)
exists.

Conjecture. For a real Banach space X, either X € Cy, or, forevery P € 7?(2X ), ker P contains
a non-separable linear subspace.

Proposition 10. Let X be a space such that X ¢ Cy and X* € Cy. Then, if P € P(?X), ker P’ ¢ W*.

Proof. The first Fréchet derivative of P is the continuous linear map P’ : X — X* such that
(P'(x),y) = 2P(x,y), x,y € X. Assuming ker P’ were in W¥, then, from Proposition 6, since
X ¢ Cp, we would have that X/ker P’ ¢ Cy. But the map T : X/ker P’ — X* given by
T(x + ker P’) := P'(x) is well defined linear bounded and one-to-one, which would imply that
X/ ker P’ is injected into X*, but X* € Cyy, after Proposition 4, would then yield X/ ker P’ € Cy,
a contradiction. O

Corollary 16. If X ¢ Cy and X* € Cy, then, for every P € P(*X), every maximal linear subspace Z
contained in ker P is such that Z ¢ W*.

We show next that, for uncountable T, the spaces ¢o(T'), [,(I'), 2 < p < o, are of the type
just considered, i.e., X ¢ Cyy, X* € Cp.

Lemma 7. Let T be an uncountable set. Then, for 1 < p < 2, the space 1,(T') € Cy, while, for
2<p <o, lp(l“) ¢ Cqh.
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Corollary 17. Let T be an uncountable set and let X be any of the spaces 1,(T), 2 < p < o0, or co(T).
If P is a continuous 2-homogeneous polynomial on X, then ker P is a closed linear subspace contained
in ker P whose dual is not weak™-separable. Consequently, every maximal linear subspace contained
in ker P has a dual which is not weak*-separable. If X = l(T), then, for every P € P(*X), ker P
contains a closed linear subspace Z such that Z & VW*.

We say that a space X is in class Cj; whenever, for any sequence (u;‘)‘;"zl in X*, we have that
Nit1keru; & Cp.

Clearly, Cyy and Cy; are disjoint classes and we show that for the elements of class Cy; the
conjecture holds.

Proposition 11. Let X € Cj,. If P € P(?X), then every maximal linear subspace contained in ker P is
non-separable.

Proof. Let Z be one of such maximal subspaces and suppose it is separable. Let Y := P'(Z) .
Then, by the maximality of Z, we have that ker PNY = Z and P does not change signin Y (we
shall assume that P|ly > 0).

Since YL = P/(Z)" is o(X*, X)-separable, after Lemma 5 we have that there is a sequence
(17)724 in X* such that Y = N, keru}. Thus, since X € C'p, it follows that Y ¢ Cp. Now, by
defining

Q(x+Z):=P(x), x€Y,

we obtain a polynomial Q € P(?(Y/Z)) which is positive definite. This implies that Y/Z € Cyy,
but, Z being separable yields Z € W?*, and so, after Proposition 6, we have that Y € Cy, a
contradiction. ]

4. THE REAL CASE

All results of this subsection was proved in [1].

Let E be a real Banach space. The author showed that either E admits a positive definite
2-homogeneous polynomial or every 2-homogeneous polynomial on E has an infinite dimen-
sional subspace on which it is identically zero. Under addition assumptions, he showed that
such subspaces are non-separable. He examined analogous results for nuclear and absolutely
(1,2)-summing 2-homogeneous polynomials and give necessary and sufficient conditions on a
compact set K so that C(K) admits a positive definite 2-homogeneous polynomial or a positive
definite nuclear 2-homogeneous polynomial.

n
The case of the polynomial P : R” - R, P(x)= Y, x% not with standing, it is exactly the ze-
j=1

ros of real valued 2-homogeneous polynomials which will be of interest here, in the case when
the domain R” is replaced by an infinite dimensional real Banach space E. There are many
“large” Banach spaces E for which there is no positive definite 2-homogeneous polynomial P.
As we will see, for a real Banach space E, either E admits a positive definite 2-homogeneous
polynomial or every 2-homogeneous polynomial on E is identically zero on an infinite dimen-
sional subspace of E.

We recall that an n-homogeneous polynomial P : E — K = R or C is, by definition, the

restriction to the diagonal of a necessarily unique symmetric continuous rn-linear form P : E X
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.x E — K; that is, P(x) = P(x,..,x) for every x € E. The polynomial P is said to be
positive definite if P(x) > 0 for every x and P(x) = 0 implies that x = 0.

An n-homogeneous polynomial P on E is nuclear if there is bounded sequence (¢;)7*; C E’
and a point ()74 in ; such that

P(x) = Y Aigy(x)"
=1

for every x in E. The space of all nuclear n-homogeneous polynomials on E is denoted by
Pn("E). A sequence (x;); in E is said to be weakly 2 — summing if

sup Y ¢(xj)? < 0.
$€Bps j=1
An n-homogeneous polynomial P on E is said to be (absolutely) (1,2)-summing if P maps

weakly 2-summing sequences into absolutely summable sequences; that is if Y- [[P(x;)|| < o
j=1

for every weakly 2-summing sequence (x;);. P is (1,2)-summing if and only if there is C > 0 so

that for every positive integer m and every x1, ..., X, in E we have

zwum<c<wpz¢wf>.
=1 $EBLs j=1

Proposition 12. A polynomial P € P(2E) is positive definite if and only if for every x,y € E such that
X # Ly,

\ 1
[P(x,y)| < 5(P(x) + P(y))-
Consequently, if P is a positive definite 2-homogeneous polynomial on E, then ||P|| = ||P||.

Proof. Assume that P is positive definite, and so P is an inner product. Hence we may apply the
Cauchy-Schwarz inequality: |P(x,y)| < |P(x)P(y)| 1, with equality if and only if x = +y. Next,
by the arithmetic-geometric inequality, |P(x)P(y)|% < 1(P(x) + P(y)). The converse follows
by taking an arbitrary x # 0 and y = 0 in the inequality. ]

Proposition 13. The following conditions on a Banach space E are equivalent:
(i) E admits a positive 2-homogeneous polynomial.
(ii) There is a continuous linear injection from E into a Hilbert space.

(iii) The point 0 is an exposed point of the convex cone of the subset {5 @ 8y : x € Sg} of the sym-
metric tensor product E @, s E, where Sg is the unit sphere of E.

(iv) There is a 2-homogeneous polynomial P on E whose set of zeros is contained in a finite dimensional
subspace of E.
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Proof. (i) = (ii): Let P be the symmetric positive definite bilinear form associated to the positive
definite polynomial P, so that (E, P) is a pre-Hilbert space with completion, say, H with the in-
duced pre-Hilbert norm. Then the injectionj : E — H is continuous since ||j(x)|| = |15(x,x)|% =
1 1

[P(x)[2 < |[P[2][x]]. =

(ii) = (iii): Note that the space of 2-homogeneous polynomials on E is the dual of EQ , ;E.
Also, recall that the convex cone of the set {dx @ Jy : x € Sg consists of all points of the form
{7 140y, @by, where x; € Sg and a; > 0}. Now, the polynomial P(x) = (j(x),j(x))
is positive definite on E. If we regard P as an element of (EQ, ;E)’, we see at P(0) = 0 while

n
P(6xQ@ ®dx) = P(x) > 0 for all x € Sg. Consequently, for any point ). a4;0x, @ éy, in the
i—1

n n
convex cone, P( Y a;dy, @ bx,) = ¥ a;P(x;) > 0, with equality if and only if all 4; = 0.
' i—1

(iii) = (iv): Let T € (E@,WE)’ be such that T(0) = 0 and T(b) > 0 for all b in the convex
cone. In particular, for all x € S, P(x) = T(6x @ dx) > 0, so that ker P = 0.

(iv) = (i): We only consider the non-trivial situation, when dim E = oo. Suppose that P is a
2-homogeneous polynomial whose zero set is contained in the finite dimensional subspace V
with basis, say, {v1,...,v,}. We first observe that P(x) is always positive or always negative,
for all x € E\V. Otherwise, there would exist x,y € Sp\y such that P(x) < 0 < P(y). Let
7 : [0,1] — E\V be a curve linking x and y. Then P o () = 0 for some ¢ € [0,1], which
is a contradiction. So, without loss of generality, we assume that P(x) > O for all x € E. Let
IT: E — Vbea projection, with T1(x) = Y ; a;(I1(x))v;. Then, the 2-homogeneous polynomial

Q defined by Q(x) = P(x) + Y1 a;(T1(x ))2 is positive definite. O

Remark 1. Suppose that there is a normalized sequence (¢;); € E’ such thatif x € E,¢;(x) =0
for all j, then x = 0. Then the mapping x € E — (%gb]-(x)) defines an injection into />, and so

Proposition 13 applies. In particular, any separable space and C(K)spaces, when K is compact
and separable, admit a positive definite 2-homogeneous polynomial. On the other hand E =
co(T) and E = [,(T), where T is an uncountable index set and p > 2, do not admit positive
definite 2-homogeneous polynomials.

We also note that if there is a continuous linear injection j : E — I, j(x) = (ju(x)), then the

mapping x — (7”( )) is a nuclear injection between these spaces. We have proved (ii) = (iii) of
the following separable version of Proposition 13.

Proposition 14. Let E be a real Banach space. The following conditions are equivalent:
(i) E admits a positive definite 2-homogeneous nuclear polynomial.

(ii) E admits a continuous injection j : E — .

(iii) There is a nuclear injection j : E — Iy of the form j(x) = OZo) xXn(x)eq with (|| xa||) € 1.
n=1

Proof. (i) = (ii): If P(x) = Y 1 ¢u(x)? is a positive definite nuclear polynomial on E, then
7(x) = Loq Pu(x)e, will satisfy (ii).
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(iii) = (i): Let j : E — Iy be a nuclear injection, j(x) = Y7 1 xu(x)en, where (||xx||)n € L.
Since N1 ker x, = {0}, it follows that the 2-homogeneous polynomial P : E — R, P(x) =
Yo 4 x2(x) is positive definite. Finally, P is nuclear since Y5 1 ||xx||> < X001 [|xn|| < 0. O

Theorem 4.1. Let E be a real Banach space which does not admit a positive definite 2-homogeneous
polynomial. Then, for every P € P(°E), there is an infinite dimensional subspace of E on which it is
identically zero.

Proof. Suppose E does not admit a positive definite 2-homogeneous polynomial and that P €
P(?E). Let S = {S : S isasubspace of E and P|s = 0}. Order S by inclusion and use Zorn’s
Lemma to deduce the existence of a maximal element S of S. Suppose that S is finite dimen-
sional. v1,...,0, be a basis for S and let T = Mg ker Ay = N ker A,, where A, : E — R
is the linear map which sends y in E to P(x,y). We note that S C T. To see this suppose that
y € S. Thenforeverys € S, s+yisalsoinS. Since

0=P(s+y) =P(s) +2A:(y) + P(y) = 2As(y)

for every s € Sweseethaty € T.

Since S is finite dimensional we can write T as T = S@ Y for some subspace Y of T. It is
easy to see that all the zeros of P|t are contained in S. Therefore, either P|r or —P|T is positive
definite on Y. Let us suppose, without loss of generality, that P|T is positive definite on Y. As
S is n-dimensional we can find ¢1,..., ¢, so that P + YI' ; ¢? is positive definite on T. Note
that T has finite codimension in E and hence is complemented. Let 7r7 be the (continuous)
projection of E onto T. Then (P + Y. 4 ¢7) o 77 + Yy A2, is a positive definite polynomial on
E, contradicting the fact that E does not admit such a polynomial. ]

Theorem 4.2. Let E be a real Banach space of type 2. Then either E admits a positive definite 2-
homogeneous polynomial or every P € P(?E) has an non-separable subspace on which it is identically
zero.

Proof. Assume that E does not admit a positive definite 2-homogeneous polynomial and let
P € P(?E). Let S C E be a maximal subspace such that P|s = 0. If S is separable, the argument
in Theorem 4.1 shows that the subspace T C E can be written T = S&@,Y, where Y is an
algebraic complement of S in T and where, without loss of generality, P|T is positive definite
onY. Thenforeverys € Sandt € T:

P(s+1t) = P(s) 4+ 2P(t) + P(t) = P(t) > 0.

Since S is separable, we can find a sequence {¢;}$°, in E so that Y7°; ¢? is positive definite on S,
and hence P + Y, ¢7 is positive definite on T. Hence we have a continuous linear injection i of
T into some Hilbert space L,(I). Since E is type 2, Maurey’s Extension Theorem ([8], Theorem

12.22) allows us to extend i to a (not necessarily injective) linear map i from E into L(I). Finally,
define a map j from E into L(I) @, > by
|Avl 7 )

0= (i

where ¢; is the i** basis vector in I,. Since j is a continuous injection, E admits a positive definite
polynomial, which is a contradiction. ]

Mg
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Theorem 4.3. Let E be a real Banach space which does not admit a positive definite 4-homogeneous
polynomial. Then for every 2-homogeneous polynomial P on E, there is a non-separable subspace of E on
which P is identically zero.

Theorem 4.4. Let E be a real Banach space which does not admit a positive definite 4-homogeneous
polynomial, and let (y);° 1 be a sequence in E'. Then for any countable family (P;)52; C P(2E), there
is a non-separable subspace of ;21 ker ¢ on which each P; is identically zero.

Note that if E does not admit a positive definite 4-homogeneous polynomial, then it can-
not admit a positive definite 2-homogeneous one either. An example of an E satisfying the
hypotheses of Theorems 4.3 and 4.4 is E = [,(I), where I is an uncountable index set and p > 4.

Proof. of Theorem 4.4: The argument begins in a similar way to our earlier proofs. As before, let
S be a maximal element of S = {S : S is a subspace of ;2 ker ¢ and P;j|s = 0,all j}. Suppose
that S is separable, with countable dense set (v;)$°,. Let ;> 1 ker ¢ N ﬂl 1 MNi2q ker(Aj)o,. As
before, S C T. We can write Tas T = S, Y for some subspace Y of T. Since all the common

, . P2
zeros of Pj|1, j € N, are contained in S, 377 17 P 7P is positive definite on Y. As S is separable
2

P
we can find (¢;)%°; so that 2] 1 2||P T Y1 ¢ is positive definite on T. Then

Mg

SRS /R0 3 o L

1l]l]||

s k2||¢1<||4

I
—_

j

is a positive definite polynomial on E, contradicting the fact that E does not admit such a poly-
nomial. O]

Corollary 18. Let E be a real Banach space which does not admit a positive definite 4-homogeneous
polynomial. Then every P € P(3E) is identically zero on a non-separable subspace of E.

Theorem 4.5. Let E be a real Banach space which does not admit a positive definite homogeneous poly-
nomial. Then, for every polynomial P on E such that P(0) = 0, there is a non-separable subspace of E
on which P is identically zero.

Lemma 8. A real Banach space E admits a positive definite 2-homogeneous (1,2)-summing polynomial
if and only 1f there is a continuous 2-summing injection from E into a Hilbert space.

Corollary 19. Let E be an Ly, 5 -space for some real A. Then every positive definite polynomial on E is
(1,2)-summing.

Note, though, that there may well not exist any positive definite polynomials on an L
space.

We next consider the question of the existence of positive definite 2-homogeneous polynomi-
als in case E is a C(K) space. We recall that a (Borel) measure y on a compact set K is said to be
strictly positive if 1£(B) > 0 for every non-empty open subset B C K.

Corollary 20. Let E = C(K) where K is a compact Hausdorff space. Then

(i) C(K) admits a positive definite 2-homogeneous polynomial if and only if K admits a strictly positive
measure.

(ii) C(K) admits a positive definite 2-homogeneous nuclear polynomial 1f and only if there is a sequence
of finite Borel measures (jt,, )5 on K such that [ f(x)dp,(x) = 0 for all n implies f = 0.
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Theorem 4.6. Let E be a real Banach space.

(i) Either E admits a positive definite 2-homogeneous nuclear polynomial or every P € Pn(?E) has a
non-separable subspace on which it is identically zero.

(ii) Either E admits a positive definite 2-homogeneous (1,2)-summing polynomial or every (1,2)-summing
has an non-separable subspace on which it is identically zero.

Proof. (i) We reason as before, supposing that E does not admit a positive 2-homogeneous nu-
clear polynomial and that P € Py(?E). Let S be a maximal subspace of E on which P is iden-
tically 0, assume that S = {v;:i € N}, let T = (2 ker Ay, and write T = S@, Y. Without
loss of generality, we may assume that P|7 is positive definite on Y, so that P|t > 0. Since S
is separable, we can find a sequence {¢;}°, in E’ so that Y©°; ¢7 is positive definite on S and
nuclear on E. Hence P + Y°; ¢? is positive definite and nuclear on T. We therefore have a
continuous linear nuclear injection i of T into Ip. We can extend i to a nuclear linear map i from
E into Ip.
Defineamap j: E — I @, > by

. Y =2 Ay, (x )
(x)=1i(x),) ———ei]-
/ < L Ala, T
Since j is a nuclear injection, E admits a positive definite nuclear polynomial, which is a con-
tradiction.

(ii) The argument given above works in the (1,2)-summing case, the only significant change
being an appeal to the [ ], Extension Theorem to prove the existence of a 2-summing extension

mapping i : E — Lo(I) @, Iy, for a sufficiently large index set I. O

Even if we know that an L., y-space admits a positive definite (1,2)-summing polynomial, it
is nevertheless possible to conclude something about the zeros of those 2-homogeneous poly-
nomials which are not (1,2)-summing.

Theorem 4.7. Let E be a real L, y-space. Then every P € P(*E) which is not (1,2)- summing has an
infinite dimensional subspace on which it is identically zero.

Proof. Suppose P € P(?E) is not (1,2)-summing. Suppose that a maximal subspace S on which
P vanishes is only finite dimensional, with basis {v1,...,v,}. Let T = N1 ker Ay, and write
T =S@Y, for some complemented subspace Y C T. Without loss of generality, P| is positive
definite on Y and, since S is finite dimensional, we can find ¢1,...,¢, so that P+ Y7 4 gbiz is
positive definite on T. Let 77 be the (continuous) projection of E onto T. Then (P + Y. ; ¢?) o
T + Y1 A3 is positive definite on E. But E is an Lo, y-space and so by Corollary 14, (P +

11 ¢?) o+ Y0 A3 is (1,2)-summing implying that P|r and hence P itself is (1,2)-summing,
a contradiction. O

4.1. ZEROES OF REAL POLYNOMIALS ON C(K) SPACES

All results of this subsection was proved in [13].

By Cpy, and W*, we shall denote the class formed by those Banach spaces which can be in-
jected (i.e., there is a continuous one-to-one linear map) into a Hilbert space, and the subclass
formed by those that can be injected into a separable Hilbert space, respectively. Notice that
X in W* is equivalent to say that X* is weak*-separable. If Y is a closed linear subspace of X
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such that Y is in W* and X/Y is in Cy, then X is in Cy. Thus obtaining that being in WW* is a
three-space property.

If X is not in Cy, then every element of P(?X) admits an infinite-dimensional linear subspace
where it vanishes, and the following conjecture is stated:

Conjecture. If X is a real Banach space such that X ¢ Cu, then the zero-set of every quadratic
polynomial, i.e., an element of P (*>X), contains a non-separable linear zero subspace.

This conjecture is proved to be correct for spaces having the Controlled Separable Projection
Property (CSPP)([7]), a class which contains the Weakly Countably Determined spaces. Let us
recall that X has the CSPP whenever, if (x;) and (x7) are sequences in X and X*, respectively,
there exists a norm-one projection on X with separable range containing (x;) and such that the
range of its conjugate contains (x7).

Let us recall that the (n — 1)-derivative of the polynomial P € P("X) is given by the contin-
uous and linear map P~ : X — £(X"~1) such that

n—1
P(”_l)(x) =n!P(x,-, ( ) ,), x €X,

where £(X"~1) is the space of continuous symmetric (1 — 1)-linear functionals on X and P is
the n-linear functional provided by the polarization formula.

Proposition 15. Givenn € N, if P € P("cy(T)), then ker P11 contains an isometric copy of co(T).

Proof. After ([10], Exercise 1.72, p. 68), we know that Py ("co(T')) coincides with P("co(T)).
Hence, if P € P("co(T)), again using ([10], Proposition 2.6, p. 88), we have that the linear map

P"=1) is weak-to-norm continuous on bounded sets from co(T) into Ls(co(T)"*~1).
For each m € N, we consider the set

T = {7 € T2 [PV (e,)|| = 1/m),

where e, stands for the unit vector in co(I') corresponding to y. We claim that I'y, is finite,
otherwise there would be an infinite sequence (’yj)‘]?":1 contained in T,,; but, since P~ ig
weak-to-norm continuous on bounded sets, and the sequence (e,,)7; is weakly null in ¢o(T),
this would yield

Lim [|[P" Y (eq)]| = 0,
J

a contradiction. Consequently, the set

To:={yeTl:P"Vie,) =0} |J Im
m=1
is countable. Thus, if E denotes the closed linear span of {e, : v € T'\I'o} in ¢o(T), it clearly
follows that E is isometric to co(T). Besides, if v € I'\I'p, we have P"~V(e,) = 0, from where
we deduce that, since P("~V is linear, E C ker P("=1). O

In the coming result it is convenient to observe that, for P € P("X), the linear subspace
ker P("~1) is always contained in the zero-set ker P .

Corollary 21. Let I be an uncountable set. If P € P(co(T')), then there is a closed linear subspace E of
co(T) such that P|p = P(0) and E is isometric to co(T).
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Corollary 22. Every real-valued analytic function on co(T') admits a closed linear subspace isometric to
co(T') where it has constant value.

Notice that Proposition 15, as well as the two previous corollaries, could also be obtained
from the well-known fact that any continuous polynomial on ¢y (T') factors through ¢y (T") with
[ countable.

Proposition 16. Let K be a compact Hausdorff topological space. The following conditions are equiva-
lent:

(i) C(K) contains a non-separable weakly compact subset.

(ii) K does not satisfy the CCC.

(iii) C(K) contains an isometric copy of c¢o(T'), for some uncountable T

(iv) There is an uncountable set T such that there is a one-to-one bounded linear map from co(T') into
C(K).

Proof. (i) = (ii). Let W be a weakly compact non-separable subset of C(K), which we may
assume to be absolutely convex. By a result of Corson, see [15], W contains a subset which
is homeomorphic, in its weak topology, to the one-point compactification of an uncountable
discrete set and we may thus find an uncountable subset Wy C W\ {0} such that every sequence
of distinct elements of Wy is weakly-null. There is clearly some § > 0 such that the set W; :=
{x € Wy : ||x]| > &} is uncountable. For each x € Wy, let V, := {t € K : |x(¢)| > §/2}.
Then, if (xj)74 is a sequence of distinct elements of Wy, it follows that N2 Vi, = &, otherwise,
since x; — 0 weakly, this would imply that lim; x;(t) = 0, for all ¢ € K, in particular, if ¢ €
ﬂ‘;ozl ij, this would lead to a contradiction. Hence, we have an uncountable collection {V :
x € Wi} of non-empty open subsets of K such that for all sequences (Vy;)3; of distinct terms
the intersection of its members is empty; this is a sufficient condition for K not to satisfy the
CCC.

(ii)=(iii). Let (V;)yer be an uncountable collection of pairwise disjoint non-empty open
subsets of K. For each 7y € T, we find a function x,, € C(K) such that ||x,|| = 1 and x,(t) =0,
t € K\V,. Thus, if E denotes the closed linear span of {x, : 7 € I'} in C(K), itis clear that E is
isometric to ¢o(T).

(iii) = (iv) Being obvious, we see that (iv) = (i).

Let I be an uncountable set and T : ¢o(I') — C(K) a one-to-one bounded linear map. Then,
it is clear that the set

{Te, : vy e T} U{0}
is weakly compact and non-separable in C(K). O

Corollary 23. Let K be a compact space not satisfying the CCC. For any positive integer n, every
continuous n-homogeneous real-valued polynomial on C(K) vanishes in an isometric copy of co(T'), for
some uncountable I,

Corollary 24. If K does not satisfy the CCC, then every analytic real-valued function on C(K) has
constant value in an isometric copy of ¢o(T'), for some uncountable T.

loo/ ¢o is isometric to C(BN \ N). Since it is well known that there is a family, with the con-
tinuum cardinality, of infinite subsets of N such that any two distinct members meet only in a
finite set, it follows that N \ N does not have the CCC, so the next result obtains.

Corollary 25. Every analytic real-valued function on le/cq is constant in an isometric copy of c¢o(T),
I having the continuum cardinality.
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Corollary 26. For every positive integer n, if P € P("lo) is such that ker P~V contains co, then

there is a closed linear subspace Z of leo such that co C Z C ker P and Z /¢y is isometric to co(T'), T
with the continuum cardinality.

Lemma 9. For an uncountable set T, the spaces co(T'), I,(T'), 2 < p < oo, do not belong to the class
Cy.

Proposition 17. If X is a Banach space such that, for some uncountable T, either co(T'), or I,(T'), 2 <
p < oo, is injected into X, then X belongs to the class Ci;.

Proof. Let T : ¢o(I') — X be a one-to-one bounded linear map (an analogous proof works for
the case of [(I') injected into X). Let (1), be a sequence in X* and let Y := N2 keru}. As
we have already seen before in similar situations, it can be seen that, for each positive integer
m, and j > 1, the set
Loji= {7y € [': |{uj, Tey)| > 1/m}
is finite, and so, for each j > 1, the set
Loj:={reTl:(uf,Tey) #0

is countable. Hence, the set Ty := I'\ U~ I'0,; has the same cardinality as I' and we have that,
Te, € Y, € T. Denoting by E the closed linear span of {e, : v € I'y}, we obtain an isometric

copy of co(T') which is injected into Y. After the previous lemma, this implies that Y cannot be
inC H- (]

From Propositions 16 and 17 the coming result obtains.
Corollary 27. If K does not have the CCC, then C(K) belongs to the class Ci;.

Lemma 10. The following statements are equivalent :
(i) X € Cy.
(ii) There is a positive definite 2-homogeneous continuous polynomial on X.

(iii) If X = C(K), K carries a strictly positive measure (a non-negative reqular finite Borel measure
which has positive value on every non-empty open subset).

Proposition 18. Let X be in class Cy;. Then, if P € P(*X), every maximal linear subspace contained
in ker P is non-separable.

Proof. Let P € P(*X). Let Z be a maximal linear subspace contained in ker P, whose existence
is guaranteed by Zorn’s Lemma. We show that Z is non-separable. If this were not so, since the
Frechet derivative P’ : X — X* is a bounded linear map, setting Y := {x € X : (P/(2),x) =

*

0,z € Z}, it follows that (X/Y)* = Y+ = P’(Z)w is weak*-separable, i.e., Y is a countable
intersection of closed hyperplanes. Hence, X € C}; implies that Y ¢ Cpy. But, from the max-
imality of Z, it is easy to see that Y Nker P = Z and that P does not change sign in Y; thus,
defining Q(y + Z) := P(y), y € Y, we obtain a quadratic polynomial in Y/ Z such that either
Q, or —Q, is positive definite. From the above lemma, this implies that Y/Z € Cp, and, since
Z € W*, after the 3-space result it follows that Y € Cp, a contradiction. O

If A is a subset of the compact space K, then by C4(K) we denote the closed linear subspace
of C(K) formed by those functions which vanish in A.
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Proposition 19. For a compact Hausdorff topological space K, if Y is a closed linear subspace of C(K)
such that C(K)/Y € W*and Y € Cy, then C(K) € Cp.

Proof. Let Y be a closed linear subspace of C(K) such that it satisfies the conditions of our state-
ment. Since (C(K)/Y)* = Y' is weak*-separable, there is a sequence (yj)]?’il contained in
C(K)*, which, after Riesz’s theorem, we identify with M(K), the space of regular finite Borel
measures in K, such that Y = (172 ker y;. In light of Jordan’s decomposition theorem, there is

no loss of generality in assuming that those measures are probabilities on K. We show first that
K must have the Countable Chain Condition (CCC, for short). Otherwise, after Proposition 16,
C(K) would contain a copy (isometrically indeed) of ¢o(T'), for some uncountable set I'. Thus,
let S : ¢o(T') — C(K) be such isometry (what we need really is that S is weakly continuous and
one-to-one). Then setting, for each pair of positive integers j, m,

Cim = {7y €T : [{nj, Sey)| > 1/m},
where e, stands for the corresponding unit vector of co(T'), it is clear that T';,, must be a finite
set. Hence, the set I'o := |; ,, ['ju is countable and the closed linear span of {Se, : v € T'\I'n} is
contained in Y. This implies that a copy of ¢o(I'\I'g) would be injected into Y, a contradiction,
since, after Lemma 9, co(T'\I'g) ¢ Cpr.
Let Ko := Uj”q suppy;. Then, it is easy to see that K carries a strictly positive measure and so,

after Lemma 10, C(Kp) € Cp. Let Hy be a Hilbert space and T be a one-to-one bounded linear
map from C(K) into Hi. Having in mind that the family of cozero sets, i.e., the complements
of zero-sets of elements of C(K), is a base for the open sets in K, Zorn’s Lemma guarantees the
existence of a maximal collection of pairwise disjoint cozero sets contained in K\ K, (we assume
that K\Ky # 0, otherwise C(K) € Cp). Now, the CCC forces this collection to be a countable
one, so let (V})$; represent this maximal collection. Clearly, if we set V := U;* 1 Vj, then

)
VCK\KyCV.

Since V is also a cozero set, let ¢ be a continuous real-valued function such that ¢~1(0) =
K\V. Observing that Cxy(K) C Ck,(K) C Y, we have that Cx\y(K) € Cy. And so, there is a

Hilbert space H and a one-to-one bounded linear map T from Cg\y(K) into Hp. Let H be the
Hilbert space given by the product Hy; x Hp. We define the map T : C(K) — H as

Tx := (Tl(x|K0), T (x@)).

Then, it can be easily verified that T is well defined, as well as that it is linear and bounded.
We see that it is one-to-one: If Tx = 0, then, since ker T} = {0}, we have that x vanishes in Kj;

also, ker T, = {0} implies that x¢ = 0 and so x must also vanish in V O K\Ky; hence, x = 0.
Therefore, C(K) € Cy. O

Corollary 28. For a compact Hausdorff topological space K, the following statements are equivalent:
(1) K does not carry a strictly positive measure.
(i) C(K) is not injected into a Hilbert space.

(iii) For every closed linear subspace Y of C(K) such that C(K)/Y € W*, it follows that Y ¢ Cy,
ie,C(K)eCy.
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(iv) For every continuous 2-homogeneous polynomial on C(K), its zero-set contains a non-separable
linear subspace.

4.2. ZERO SETS OF POLYNOMIALS IN SEVERAL VARIABLES

All results of this subsection was proved in [4].
Let k,n € Nwhere 1 is odd. Let us denote by {¢;}¥ ; the canonical basis of R*. Given! € Na
partition A = (Aq,..., Ax) of {1,...1} is called an ordered partition of {1,...1} of rank |A| = k.

We set N(k,n) = < k;fgl

of nodes if Plg ) = 0 implies P = 0 whenever P is an n-homogeneous polynomial on RF.

> . A set S(k,n) of cardinality N (k,n) in R is called a basic set

Lemma 11. Given k,n € N, there exists a set S(k,n) = {vi}izi(f’n) C R such that e € S(k,n), 1

j < k, with the property that for every n-homogeneous polynomial Q(x) on R¥, if Q(v') =0, 1 < i
N(k,n) then Q = 0 on R,
Lemma 12. Given k,n € N, k < [ there exist p(k,1) € N, p(k,1) < k!(log,(1)), and a system

{AI}fikl’l) of ordered partitions of {1,...,1} of rank k, such that for every B C {1,...,1}, |B| =k,
there exists A = (A1, ..., Ax) for which BN A; # 0 for every 1 <i < k.

<
<

Given an (abstract) n-homogeneous nonzero polynomial Q(x) on a k-dimensional Banach
space X, by a suitable choice of the basis {é1,...,6;} of X we can easily achieve that in the
formula

k
Q) _yie) = Y, by,
i=1 |a|=n
we have b("0--0) -£ 0. Indeed, it is enough to choose a direction é] in which Q is nonzero. It
k
is easily verified that a change of variables y; — C (.Z Xi), Y2 = X2,...,Yx — Xg, where C is

1=n
sufficiently large, will lead to a transformed algebraic formula for the same abstract polynomial

Qon X:
Q((x1,...,x¢)) = Y a*x",
|x|=n
in which g(#0--0) g(010..0) = 5(00...01) are all nonzero. To summarize, we have the follow-
ing.

Lemma 13. Let Q(x) be an (abstract) n-homogeneous nonzero polynomial on a k-dimensional Banach
space X. Then there exists a basis {e1, ..., ey} in X such that in the formula

k
Q(le xie)) = Q((x1,...,xp)) = Y a*x%,

|| =n

0,,0) 7(0,12,0,...,0) 0,0,...,0,1)
7 7

all the constants a(™ . at are nonzero.

Let us introduce the following notation. Let A C {1,2,...,1}.
k
We put Py : R — Rl, PA( ) xiei) = Y «xje;.
i=1 jeA
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Givenv = (v1,...,v) € RFand an ordered partition A = (A1,..., Ag) of {1,...,1}, |A| =k,
we define v.4 : R! — R as

k
v.A(x) = ) vjPa ().
i1

Theorem 4.8. Let n € N, n be odd, and let Q(x) be n-homogeneous polynomial on RN. Provided

N > k!(log,(N))* < k}tf; 1 > , there exists a linear subspace X — RN, dim X = k such that

Q=0o0onX.
Proof. By Lemma 13, we may assume that the basis {ey, ..., en} of RV is chosen so that all the

N)

monomials in the formula for Q have nonzero coefficients. Consider the system {.A; }fikl’ from

Lemma 12 and the set S(k, n) = {v]}?]:(;(’n) from Lemma 11. Fixabasiser;, 1 < I < p(k,N), 1 <
J < N(k,n) in RFENINE  Eorm an n-homogeneous polynomial Q : RN — RPUN)N(kn)
Qx) =YY Qe Ar(x))er .
rj

By assumption, N + 1 > p(k, N)N(k,n) and the mapping Q(x) is odd (Q(
By the Borsuk antipodal theorem ([16]) there exists a nonzero x° = (x{,...,x%))
Q(x%) = 0. Denote B = supp(x?).

We first claim that |B| > k. Indeed, otherwise there exists some A; = (A1,..., Ax) such
that |[BN A;| < 1, whenever 1 < i < Ak, and |[BN A;] = 1 for some j. Pick J such that v/ =
(0,...,0,1,0,...,0) = ey € S(k,n), where {m} = BN A;. Clearly, v;.A;(x°) = (0,...,0,x},,0,..
as all monomials in the formula for Q are nonzero, Q(vl. A1(x%)) # 0, a contradiction to
O(x") = 0.

Thus [B| > k and we can find A; = (Ay,..., Ay) such that [BNA;| > 1, 1 < i <k, which
means that x' = P4 (x°) # 0. Next define a polynomial R on R¥

K
R((tl,. . .,tk)) = Q(Ztixi).
i=1

Since Q(xp) = 0, it is immediate that R(v/) = Q(UJ.AI(X9)) =0,1 <] <N(kn). Thus
R = 0 on R*. Consequently, it suffices to choose X = span{x’}¥ |, in order to obtain Q = 0 on
X.

—x) = —Q(x)).
€ RY, such that

O]

Note that in Theorem 4.8, N = (log, N)* — coas N — cc. In order to give an explicit formula
for the asymptotic dependence of N on the values of k and 7, let us note that N > (k + n)3*
satisfies the requirements of Theorem 4.8, provided k + n > 2*.

As the following corollary shows, the fact that Theorem 4.8 was stated for homogeneous
polynomials is not a real restriction.

Corollary 29. Given k and m € N, there is N € N such that every odd polynomial Q(x) of degree
2m + 1 on RN vanishes on a subspace of dimension k.

In order to motivate the last part of our note, which deals with even degree polynomials, let
us recall the statement of the fundamental theorem of Dvoretzky on almost spherical sections
of unit balls of finite dimensional Banach spaces.

.,0)
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Theorem 4.9. (Dvoretzky) Let (X, || - ||) be an N-dimensional Banach space, ¢ > 0,k € N. There
exists a function 1 : Rt — R such that provided k < n(e)log(N) there exists a linear operator
T: 15 — X, suchthat ||T||||T7Y| < 1+e

4.3. ODD DEGREE POLYNOMIALS ON REAL BANACH SPACES

All results of this subsection was proved in [5], [6].

A classical result of Birch claims that for given k, n integers, n-odd there exists some N =
N(k, n) such that for arbitrary n-homogeneous polynomial P on RY, there exists a linear sub-
space Y — R of dimension at least k, where the restriction of P is identically zero (we say that
Y is a null space for P).

Given n > 1 odd, and arbitrary real separable Banach space X (or more generally a space
with w*-separable dual X*), we construct a n-homogeneous polynomial P with the property
that for every point 0 # x € X there exists some k € N such that every null space containing
x has a dimension at most k. In particular, P has no infinite dimensional null space. For a
given 1 odd and a cardinal T, we obtain a cardinal N = N(t,1n) = exp"*! T such that every
n-homogeneous polynomial on a real Banach space X of density N has a null space of density
T.

In every real separable Banach space X (or more generally every real Banach space with w*-
separable dual X*), of a n-homogeneous polynomial P(n > 1 arbitrary odd integer) which has
no n-finite dimensional null space.

We say that the dual X* has w* density character w*-dens(X*) =T, if there existsaset S C X*

of cardinality I', such that $V =X *,and moreover I' is the minimal cardinal with this property.
Recall the following well-known fact.

Fact 1. Let X be a Banach space, then w*-dens(X*) iff there exists a bounded linear injection
T:X — loo(T).

Theorem 4.10. Let X be an infinite dimensional real Banach space with w*-densX* = w, n > lan odd
integer. Then there exists a n-homogeneous polynomial P : X — R without any infinite dimensional
null space. More precisely, given any 0 # x € X, P(x) = 0, there exists a N € N such that every null
spacex € Y <= X has dimY < N.

Proof. Suppose that we have already proven the statement of the theorem for X = cpand n = 3.
Let P : ¢ — R be the polynomial. Given any Banach space X with w*-densX* = w, and n =
3 4 21, we can construct the desired n-homogeneous polynomial Q : X — R as follows. Fix any

bounded linear injection T : X — ¢¢ (put for example T(x) = (@)wl, where {f;}?°, C Bx-
1=

is a separating set of functionals), and put Q(x) = Po T(X) - < )3 % fi(x)% > . It is easy to verify
i—1

that a linear subspace of X where Q vanishes translates via T into a linear subspace (of the same
dimension) of ¢y where P vanishes, which concludes the implication. It remains to produce P
on ¢o. We put

P((x) = Y xx Y, wpxt,
=1 ikt

wher(i xi > 0, together with the auxiliary system T,Z/i > (0, are chosen satisfying conditions (0)-
(3) below.
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0 Y X |af] < oo
k=1i=k+}+1
1) e > ¥ oc;'..

k1
@) Llai >y 1
2% = & T

(3) (a},)? < 1o 7,7, whenever r < p < g.
To construct such a system of coefficients ock (and auxiliary system T,ﬁ ;. > 0) is rather straight-

forward, proceeding inductively by the infinite rows of the matrix {a¥}. Indeed, the additional
conditions always require that elements of a certain row are small enough depending on the el-
ements of the previous rows. Note that our choice guarantees that the formula for P converges
absolutely for every x € co.

Claim. Givenany 0 # x € ¢y, P(x) = 0, there exists N € N such that for every null space
x €Y < co we have that dimY < N.

We may assume that ||x||c < 1. Consider a (nonhomogeneous) 3-rd degree polynomial

R(y) = P(x +y).

[o0]

R() = Y (w0 Y oo+ v

k=1 i=k+1
Writing R = Ro + R1 + R2 + R3, where R, is the m-homogeneous part of R, we obtain in
particular:

o 00 . [ee] [ee] )
i) = Z Xe Y qyid Y vk Y, 2wy
k=1 i=k+1 k=1 i=k+1
s—1

Thus Ra((yi)) = Z Z Blysy;, where p5 = Z xxay, B = 2x0k.

To prove the claim 1t;uff1ces to find N € N such that Ry, restricted to Z = [¢; : i > N| —
co (Z has codimension N) is strictly positive outside the origin. Indeed, if so, then R(Az) =

3
Y. A"Ry;(z) is a nontrivial 3-rd degree polynomial in A, for every z € Z, and in particular for
m=0
every z € Z there exists some A € R such that P(x + Az) = R(Az) #0. Nowifx € Y — ¢pisa
null space, then ZNY = {0}, and so dim Y < N, as stated.
Let us without lost of generality assume that x, > 0, where r = min{i : x; # 0}. We choose
N > r large enough, so that the following are satisfied.

s—1
(i) s = L xju; > Ix,a5  forevery s> N+1.
j=r

o0 . .
There exists a decomposition 5 > % 1 8%, &L > 0 such that
i=N+

. 1
(i) ()% < 7650, whenever N <p <g.
To see that such a choice on N is possible, we estimate using property (1), whenever s > %

s—1

— 1
By > xety — ) X5 > e — ) aSw > Exroci
j:r+l ]:7’+1
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Thus N > % guarantees that (i) is satisfied. To see (ii), for N large enough, and s > N, %xr >
ﬁ > %, so we have ﬁg%ai. So putting 8 = Tri,s suffices using properties (2) and (3).
The conditions are set up so that Ry restricted to Z = [e; : i > N] satisfies

Ra((yi)) = Z Z ((52% + 55%21 + Zagqupyq).
p=N+1g=p+1

However, condition (ii) implies that
3
SpY + 04y + 200X gYpg = Opyy + OpYy — 20plypyg| > 1(52% +8y;)

1 1 1
+ (GOl — 5/ 8 lyal)? > S (6hy5 + ).

The last expression is clearly a positive quadratic form in variables y,, y;, which concludes
the claim that

o v (1 1
Ro((y:)) ZZP:N—l-l Z (§5gy%+§55y3) >0
g=p+1
for every 0 # (y;) € Z. .

The statement of the theorem applies to all separable Banach spaces, I, C(K), where K is
separable (not necessarily metrizable). It is inherited by the subspaces, so since l1(¢) — e, it
applies also to /3.

Our objective now is to obtain some estimate on the size of card(T'), such that every n-
homogeneous odd polynomial on [1(I') has large null sets. Given and ordinal I', we say that a

1=

71 <72 <. <, B1 <...< By, for arbitrary x; € R.

! !
polynomial P : [1(T') — R is subsymmetric if P <2 xie%) =P <2 xie/;l) whenever we have
1 i1

Lemma 14. Let P : [1(T') — R be a subsymmetric n-homogeneous polynomial, n odd. Then P has a
null set of density T’

Denote by expa = 2%, exp"1a = exp(exp” ), where « is a cardinal. For a set S, let [S]" =
{X € S :cardX = n}. We will use the following result, which in the language of partition
relations claims that (exp™ &)t — (T )al.

Theorem 4.11. (Erdos, Rado) Let « be an infinite cardinal, n € N, x = (exp™ &) and { G} y<q be
a partition of [k]". Then there exist M C x, cardM = ot and [M]" C G, for some y < .

Proof. Let P be an n-homogeneous polynomial, suppose I' is an ordinal. We partition the set
[T']" using continuum many sets {G (8, =iy <inen} * Firesin € R} as follows.

We put [71,...,74] € G{ﬁil,...,in31§i1§~~~§in§n} iff {a;,, i, 1 <i <...<i, < n} coincides
with the set of coefficients of P, when restricted to the n-dimensional space with coordinate
vectors eg,, ..., eg, where {B;} is an increasingly reordered set {;} (in the order coming from
I'). Applying the Erdos-Rado theorem 4.11 yields a subset S C I’ of the desired cardinality, such
that the restriction of P to [1(S) is a subsymmetric polynomial. O

Theorem 4.12. Suppose cardl' < exp” w, n odd. Then every n-homogeneous polynomial on I1(T') has
a null space of density at least a'*.
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Theorem 4.13. Let X be a real Banach space of dens(X) > exp”+1 x, where & is a cardinal, n odd
integer. Then every n-homogeneous polynomial on X has a null space of density at least a™".

Proof. LetI' = exp” a. We construct a continuous injection T : [1(T') — X inductively as follows.
Having chosen T(e¢;) € By for all i < p < T together with functionals f; € Bx«, fi(T(e;)) >

%, we choose T(eg) € (N ker fi. The last set is nonempty, since cardX < 2¢" —densX’ g g%

i<p
densX* > exp”a and we can continue the inductive process. Now it remains to note that
P o T is an n-homogeneous polynomial on /1 (T'), its null subspaces carry right into X, and the
previous theorem applies. O

Proposition 20. Let T be an infinite cardinal, P : ¢o(T') — R be an arbitrary continuous polynomial.
Then P has a null space of separable codimension in co(T).

Proof. Since P is wsc, it mapps in particular w-null sequences to sequences convergent to 0 € R.
Using a standard argument we see that P depends only on a countable set of coordinates S C T,
and so P restricted to I'\S is identically zero. O

A similar proof based on wsc property for polynomials of degree less than p on [, spaces
gives.

Proposition 21. Let T be an infinite cardinal, P : 1,(T') — R be an arbitrary continuous polynomial of
degree less than p. Then P has a null space of separable codimension in 1,(T).

In order to investigate polynomials of degree higher than p on I,(T') spaces, we need the
following lemma.

Lemma 15. Let P be a polynomial of n-th degree on 1,(T'), T > w, n < 2[p|. Then there exists a
subset T’ C T, linearly ordered, such that the restriction of P to T” has the form

P((x;)))= ), PO LN S 7

jer [pl<m<n i1 <..<i<j

The previous proposition may be further generalized to arbitrary degree polynomial. The
resulting formula will contain only those mixed terms whose last power is of degree at least

[p].

Proposition 22. Let P be a n-homogeneous polynomial on I,(w), n < 2[p]. Then P has an infinite
dimensional (block) null space.

" .
iyl 1s at most

countable. We proceed inductively as follows. Pick the first wy elements of T = wy". It follows
that there is some ky € I', and a set I'1, minT'y > ko, of cardinality wf“ such that al’-’f i 0,
whenever ko € {i1,...,i}, for all j € T'y. Since w;" is a regular cardinal, we can in the next step
choose the initial wq-interval of I'7, and kq in there, such that for some I', C I';, min I'; > kq of

Proof. Consider the P in the above form. Since for every j, the set of nonzero a

cardinality w;” we have that ay . =0, wheneverk € {i1,...,i}, forallj € Ty.
We proceed inductively along w. The final set {kj};?ozo clearly defines a splitting of P restricted
to this index set. O

Proposition 23. Let P be a 3rd degree polynomial on I (w1 ). Then P has an infinite dimensional null
(block) space.
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Proof. Without lost of generality, P has the formula

X)) =Y, Zai,jxix?.

j<wr i

We are going to construct a block sequence {1 }° ; inductively as follows. First step. If there
exists some i such that Ty = {j:i < j, ajj = 0} is uncountable, then we choose 11 = ¢;. Clearly,
P restricted to 1, ¢; : i € T'1] splits with respect to the decomposition {i}, I';.

Otherwise, for every i there exists ¢; > 0 such that A; = {j : j > [, |a; ;| > ¢;} is uncountable.
Fix i = 1 and still using the previous assumption, pick an ! > 1 such that the set 1 = {j :
j € M,j >, |a;jj| < 3} is uncountable. Here we are using the property of the ground space
I, namely if such a choice were not possible, we would have some j for which the set {i : i <
j. laij| > 5} is infinite. This is a contradiction with the continuity of the linear term in the
shifted polynomial Q(x) = (e] + x). Assume, without lost of generality, that there exists some
0>0, a=¢e >a—-36>+3 >b>b—35>c>0,and a disjoint decomposition of I'; into
uncountable subsets I'}, T? such that a1, — a| < dforallj €Iy, |a;—b| < SforalljeITand
|aj—c| < dforallj € T]. Putuy = ¢; — % e1. Consider now the polynomial P restricted to
the subspace generated by the basic long sequence {el 1i < wi} ={uy,e:je 1} Its formula

has the canonical form P((x;)) = <2 ; a”xlx , where moreover |a%/i| > ¢ foralli > 1, and
jlwrisi
bothsets A = {i:i > l,al. > 5} and B = {i :i > 1,a}. < —5} are uncountable. Blocking
once more, this time using a bijection ¢ : A — B and suitable coefficients ¢;,i € A we obtain
the disjoint blocks v; = e; + cieq(;), i € A, such that in the restriction of P to e}, v;] splits with
respect to e1 and [v;]. The inductive step consists of repeating the previous argument, for the
polynomial P restricted to the last index set defining the previous splitting. This leads to a
sequence {1y}, where each 1y lies in the block subsequent to blocks containing u;,i < k, and
defining a splitting of P. Thus P splits with respect to disjoint block vectors {u;};’ ;, and the
result follows. ]

Remark 2. The assumption that T is uncountable cannot be dropped. Indeed, consider the

[e0]
subspace of [, generated by vectors v, = }_ al'e; for some fast decreasing sequence a’ \, 0,
i=ky
and fast increasing ky — oco. We have {v,} ~ {e,} the canonical basis. The coordinates of
v;i(i), ] < n in the intervals i € [ky, k1) are chosen so that for every pair of nonzero vectors

X = Z b, y = Z cjv; there exists some i € [ky, k,1) for which x(i),y(i) # 0. This can
j=1 j=1

be obtained by a simple compactness argument. It follows, that [v, : n € N] contains no two

nonzero disjoint blocks.

Givenn —2 < p < n, where n is odd, we define a polynomial operator Q, : I,(c) — I1(c)
by Q((x;)) = (x7). Clearly, Q is n-homogeneous and injective. Let P be the 3-homogeneous
polynomial on I1(c) without any infinite dimensional null space.

Lemma 16. R = P o Q is a 3n-homogeneous polynomial on 1,(c), which has no infinite dimensional
block null space. In particular, it has no nonseparable null space. Moreover, for every I > 4n + 1 odd,
there exists an I-homogeneous polynomial on 1,(c) without a nonseparable null space.
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3pobJieHO OIVIst)i OCHOBHUX PE3y/bTaTiB MpPOo JiiHiHI mignpocTopu y sjapax HOJIHOMIB Ha JifiCHUX Ta
KOMILIEKCHUX DAaHAXOBUX [TPOCTOPAX.

Kuo4osi cioBa: nojinomMu, JiiHiiHI TignpocTopu, sapa HogiHOMIB Ha HaHAXOBUX MTPOCTOPAX.



